予測テンソル(実際のネットワーク)があります
_(Pdb) pred
<tf.Tensor 'transpose_1:0' shape=(?, 200, 200) dtype=float32>
_
そしてyテンソル
_y = tf.placeholder("float", [None, n_steps, n_classes])
(Pdb) y
<tf.Tensor 'Placeholder_1:0' shape=(?, 200, 200) dtype=float32>
_
に送りたい
f.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
ただし、次元は_[batch_size, num_classes]
_である必要があります
pred
とy
の両方を次のように再形成したいと思います
_<tf.Tensor 'transpose_1:0' shape=(?, 40000) dtype=float32>
_
しかし、reshape
を実行すると、
_(Pdb) tf.reshape(pred, [40000])
<tf.Tensor 'Reshape_1:0' shape=(40000,) dtype=float32>
_
_(?,40000)
_の代わりに、None
ディメンションをどのように維持できますか? (バッチサイズ寸法)
関連するコードもすべて投稿しました...
_# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_steps, n_classes])
# Define weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_hidden, n_classes]), dtype="float32"),
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]), dtype="float32")
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden]), dtype="float32"),
'out': tf.Variable(tf.random_normal([n_classes]), dtype="float32")
}
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_hidden)
# This input shape is required by `rnn` function
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_Tuple=True)
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
output_matrix = []
for i in xrange(n_steps):
temp = tf.matmul(outputs[i], weights['out']) + biases['out']
# temp = tf.matmul(weights['hidden'], outputs[i]) + biases['hidden']
output_matrix.append(temp)
pdb.set_trace()
return output_matrix
pred = RNN(x, weights, biases)
# temp = RNN(x)
# pdb.set_trace()
# pred = tf.shape(temp)
pred = tf.pack(tf.transpose(pred, [1,0,2]))
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
_
私はヤロスラフのコメントにある他の質問の回答の1つの著者です。 Noneディメンションには-1を使用できます。
バッチサイズを知らなくても、tf.reshape()を使用して簡単に実行できます。
x = tf.placeholder(tf.float32, shape=[None, 9,2])
shape = x.get_shape().as_list() # a list: [None, 9, 2]
dim = numpy.prod(shape[1:]) # dim = prod(9,2) = 18
x2 = tf.reshape(x, [-1, dim]) # -1 means "all"
最後の行の-1は、ランタイムでのバッチサイズに関係なく、列全体を意味します。 tf.reshape()で確認できます。