web-dev-qa-db-ja.com

ValueError:寸法は等しくなければなりませんが、入力形状が[?、784]、[500,500]の 'MatMul_1'(op: 'MatMul')の場合は784と500です。

私はtensorflowを初めて使用し、sentdexによるチュートリアルに従っています。エラーが発生し続けます-

ValueError: Dimensions must be equal, but are 784 and 500 for 
'MatMul_1' (op: 'MatMul') with input shapes: [?,784], [500,500].

問題の原因であると私が信じるスニペットは-

l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), 
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), 
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), 
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.add(tf.matmul(l3, output_layer['weights']), 
output_layer['biases'])

return output

私は初心者で間違っているかもしれませんが。私のコード全体は-

mnist = input_data.read_data_sets("/tmp/ data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')


def neural_network_model(data):
hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784, 
n_nodes_hl1])),
                  'biases': 
tf.Variable(tf.random_normal([n_nodes_hl1]))}

hidden_2_layer = {'weights': 
tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                  'biases': 
tf.Variable(tf.random_normal([n_nodes_hl2]))}

hidden_3_layer = {'weights': 
tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                  'biases': 
tf.Variable(tf.random_normal([n_nodes_hl3]))}

output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3, 
n_classes])),
                'biases': tf.Variable(tf.random_normal([n_classes]))}

l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), 
hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), 
hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), 
hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)

output = tf.add(tf.matmul(l3, output_layer['weights']), 
output_layer['biases'])

return output


def train_neural_network(x):
prediction = neural_network_model(x)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
(logits=prediction, labels=y))
optimizer = tf.train.AdamOptimizer().minimize(cost)

hm_epochs = 10

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())

    for Epoch in range(hm_epochs):
        Epoch_loss = 0
        for _ in range(int(mnist.train.num_examples / batch_size)):
            Epoch_x, Epoch_y = mnist.train.next_batch(batch_size)
            _, c = sess.run([optimizer, cost], feed_dict={x: Epoch_x, 
y: Epoch_y})
            Epoch_loss += c
        print('Epoch', Epoch, 'completed out of', hm_epochs, 'loss:', 
Epoch_loss)

    correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
    print('Accuracy:', accuracy.eval({x: mnist.test.images, y: 
mnist.test.labels}))


train_neural_network(x)

助けてください。ちなみに、私はPython 3.6.1およびTensorflow 1.2の仮想環境でMacを実行しています。そして、IDE Pycharm CEを使用しています。その情報のいずれかが役立つ場合。

7
Osiris.N

問題は、l1ではなくdataを参照していることです。の代わりに

l2 = tf.add(tf.matmul(data, hidden_2_layer['weights']), 
                      hidden_2_layer['biases'])

あなたのコードは読むべきです

l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), 
                      hidden_2_layer['biases'])

l3の同上。の代わりに

l3 = tf.add(tf.matmul(data, hidden_3_layer['weights']), 
                      hidden_3_layer['biases'])

あなたが持っている必要があります

l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), 
                      hidden_3_layer['biases'])

次のコードはエラーなしで実行されました。

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)

n_nodes_hl1 = 500
n_nodes_hl2 = 500
n_nodes_hl3 = 500

n_classes = 10
batch_size = 100

x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')

def print_shape(obj):
    print(obj.get_shape().as_list())

def neural_network_model(data):
    hidden_1_layer = {'weights': tf.Variable(tf.random_normal([784,
                                                               n_nodes_hl1])),
                      'biases':
                      tf.Variable(tf.random_normal([n_nodes_hl1]))}

    hidden_2_layer = {'weights':
                      tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
                      'biases':
                      tf.Variable(tf.random_normal([n_nodes_hl2]))}

    hidden_3_layer = {'weights':
                      tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
                      'biases':
                      tf.Variable(tf.random_normal([n_nodes_hl3]))}

    output_layer = {'weights': tf.Variable(tf.random_normal([n_nodes_hl3,
                                                             n_classes])),
                    'biases': tf.Variable(tf.random_normal([n_classes]))}
    print_shape(data)
    l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']),
                hidden_1_layer['biases'])
    print_shape(l1)
    l1 = tf.nn.relu(l1)
    print_shape(l1)
    l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']),
                hidden_2_layer['biases'])
    l2 = tf.nn.relu(l2)

    l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']),
                hidden_3_layer['biases'])
    l3 = tf.nn.relu(l3)

    output = tf.add(tf.matmul(l3, output_layer['weights']),
                    output_layer['biases'])

    return output


def train_neural_network(x):
    prediction = neural_network_model(x)
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits
                          (logits=prediction, labels=y))
    optimizer = tf.train.AdamOptimizer().minimize(cost)

    hm_epochs = 10

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())

        for Epoch in range(hm_epochs):
            Epoch_loss = 0
            for _ in range(int(mnist.train.num_examples / batch_size)):
                Epoch_x, Epoch_y = mnist.train.next_batch(batch_size)
                _, c = sess.run([optimizer, cost], feed_dict={x: Epoch_x,
                                                              y: Epoch_y})
                Epoch_loss += c
            print('Epoch', Epoch, 'completed out of', hm_epochs, 'loss:',
                  Epoch_loss)

        correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
        accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
        print('Accuracy:', accuracy.eval({x: mnist.test.images, y:
                                          mnist.test.labels}))


train_neural_network(x)
3
finbarr