web-dev-qa-db-ja.com

ValueError:pos_label = 1は有効なラベルではありません:array(['neg'、 'pos']、dtype = '<U3')

リコールスコアを取得しようとしたときに、このエラーを受け取りました。

X_test = test_pos_vec + test_neg_vec
Y_test = ["pos"] * len(test_pos_vec) + ["neg"] * len(test_neg_vec)

recall_average = recall_score(Y_test, y_predict, average="binary")

print(recall_average)

これは私に与えます:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:1030: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  if pos_label not in present_labels:
Traceback (most recent call last):
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
    main()
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
    recall_average = recall_score(Y_test, y_predict, average="binary")
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
    sample_weight=sample_weight)
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1036, in precision_recall_fscore_support
    (pos_label, present_labels))
ValueError: pos_label=1 is not a valid label: array(['neg', 'pos'],
      dtype='<U3')

私はこのように「pos」を1に、「neg」を0に変換しようとしました:

for i in range(len(Y_test)):
     if 'neg' in Y_test[i]:
         Y_test[i] = 0
     else:
         Y_test[i] = 1

しかし、これは私に別のエラーを与えています:

    C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:181: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  score = y_true == y_pred
Traceback (most recent call last):
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module>
    main()
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main
    evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False)
  File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model
    recall_average = recall_score(Y_test, y_predict, average="binary")
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score
    sample_weight=sample_weight)
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1026, in precision_recall_fscore_support
    present_labels = unique_labels(y_true, y_pred)
  File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\multiclass.py", line 103, in unique_labels
    raise ValueError("Mix of label input types (string and number)")
ValueError: Mix of label input types (string and number)

私がやろうとしていることは、正確さ、正確さ、再現率、f_measureというメトリックを取得することです。 average='weighted'、同じ結果が得られます:精度=リコール。これは正しくないと思いますので、average='binary'、しかし私にはそれらのエラーがあります。何か案は?

7
Mr. Wizard
recall_average = recall_score(Y_test, y_predict, average="binary", pos_label="neg")

使用する "neg"または"pos" なので pos_labelこのエラーは再び発生しません。

9
Steve

肯定的なクラスを(pos_label=pos)で示します

だから使用:

Recall=recall_score(Y_test, Y_predict, pos_label='pos') 
0
Bowale Samuel