その部分は他のデータセットでかなりうまく機能したので、問題は本当に奇妙です。
完全なコード:
import numpy as np
import pandas as pd
import xgboost as xgb
from sklearn.cross_validation import train_test_split
# # Split the Learning Set
X_fit, X_eval, y_fit, y_eval= train_test_split(
train, target, test_size=0.2, random_state=1
)
clf = xgb.XGBClassifier(missing=np.nan, max_depth=6,
n_estimators=5, learning_rate=0.15,
subsample=1, colsample_bytree=0.9, seed=1400)
# fitting
clf.fit(X_fit, y_fit, early_stopping_rounds=50, eval_metric="logloss", eval_set=[(X_eval, y_eval)])
#print y_pred
y_pred= clf.predict_proba(test)[:,1]
最後の行により、以下のエラーが発生します(完全な出力が提供されます)。
Will train until validation_0 error hasn't decreased in 50 rounds.
[0] validation_0-logloss:0.554366
[1] validation_0-logloss:0.451454
[2] validation_0-logloss:0.372142
[3] validation_0-logloss:0.309450
[4] validation_0-logloss:0.259002
Traceback (most recent call last):
File "../src/script.py", line 57, in
y_pred= clf.predict_proba(test)[:,1]
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.Egg/xgboost/sklearn.py", line 435, in predict_proba
test_dmatrix = DMatrix(data, missing=self.missing)
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.Egg/xgboost/core.py", line 220, in __init__
feature_types)
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.Egg/xgboost/core.py", line 147, in _maybe_pandas_data
raise ValueError('DataFrame.dtypes for data must be int, float or bool')
ValueError: DataFrame.dtypes for data must be int, float or bool
Exception ignored in: >
Traceback (most recent call last):
File "/opt/conda/lib/python3.4/site-packages/xgboost-0.4-py3.4.Egg/xgboost/core.py", line 289, in __del__
_check_call(_LIB.XGDMatrixFree(self.handle))
AttributeError: 'DMatrix' object has no attribute 'handle'
ここで何が問題になっていますか?私はそれを修正する方法がわかりません
UPD1:実はこれはカグルの問題です: https://www.kaggle.com/insaff/bnp-paribas-cardif-claims-management/xgboost
ここでの問題は初期データに関連しています。一部の値は浮動小数点または整数で、一部のオブジェクトです。これが、キャストする必要がある理由です。
from sklearn import preprocessing
for f in train.columns:
if train[f].dtype=='object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train[f].values))
train[f] = lbl.transform(list(train[f].values))
for f in test.columns:
if test[f].dtype=='object':
lbl = preprocessing.LabelEncoder()
lbl.fit(list(test[f].values))
test[f] = lbl.transform(list(test[f].values))
train.fillna((-999), inplace=True)
test.fillna((-999), inplace=True)
train=np.array(train)
test=np.array(test)
train = train.astype(float)
test = test.astype(float)
以下に示すように、categorical variable
ソリューションを確認することもできます。
for col in train.select_dtypes(include=['object']).columns:
train[col] = train[col].astype('category')
test[col] = test[col].astype('category')
# Encoding categorical features
for col in train.select_dtypes(include=['category']).columns:
train[col] = train[col].cat.codes
test[col] = test[col].cat.codes
train.fillna((-999), inplace=True)
test.fillna((-999), inplace=True)
train=np.array(train)
test=np.array(test)