Pytorch.butを使用して文字LSTMを実装しようとしています。
for Epoch in tqdm(range(epochs)):
for i in range(len(seq)//batch_size):
sidx = i*batch_size
eidx = sidx + batch_size
x = seq[sidx:eidx]
x = torch.tensor(x).cuda()
input_seq =torch.nn.utils.rnn.pack_padded_sequence(x,seq_lengths,batch_first = True)
y = out_seq[sidx:eidx]
output = model(input_seq)
loss = criterion(output,y)
loss.backward()
optimizer.step()
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/module.py in __call__(self, *input, **kwargs)
487 result = self._slow_forward(*input, **kwargs)
488 else:
--> 489 result = self.forward(*input, **kwargs)
490 for hook in self._forward_hooks.values():
491 hook_result = hook(self, input, result)
/usr/local/lib/python3.6/dist-packages/torch/nn/modules/rnn.py in forward(self, input, hx)
180 else:
181 result = _impl(input, batch_sizes, hx, self._flat_weights, self.bias,
--> 182 self.num_layers, self.dropout, self.training, self.bidirectional)
183 output = result[0]
184 hidden = result[1:] if self.mode == 'LSTM' else result[1]
RuntimeError: cuDNN error: CUDNN_STATUS_BAD_PARAM
_
CPUに切り替えると、同じエラーが発生しましたが、エラーのはるかに良い説明が得られます。私の場合において、問題は私がネットワークに与えていた入力の種類にありました。モデルはlong
を必要としている間、float
を推測していました。次の変更を加え、コードが機能しました。基本的にCPUに切り替えると、より良いエラーの説明があります。
input_seq = input_seq.float().cuda()
_
私は同じエラーに遭遇します。 これが解決策です 。
入力の種類をfloat64
からfloat32
に変更する必要があります。これは次のように入力する必要があります。
input_seq = input_seq.float()