Pheatmap library(pheatmap)
は、各ヒートマップ列の上部にヘッダーIDの色を追加するためにannotation_colors
を取ります。
ボーダー付きの列ヘッダーの色として白を追加します。 border_color
で境界線を追加できますが、この関数はヒートマップ全体にも境界線を描画します。
以下は、私がこれまでにしたことです。
library(pheatmap)
set.seed(123)
df<-data.frame( matrix(sample(30), ncol = 5))
colnames(df)<-LETTERS[1:5]
subj<-c("P1", "P2","P3", "T1", "T2","T3")
rownames(df)<-subj
aka2 = data.frame(ID = factor(rep(c("Pat","Trea"), each=3)))
rownames(aka2)<-subj
aka3 = list(ID = c(Pat = "white", Trea="blue"))
pheatmap(t(scale(df)),
annotation_col = aka2,
annotation_colors = aka3[1],
annotation_legend = FALSE,
gaps_col = 3,
show_colnames = T, show_rownames = T, cluster_rows = F,
cluster_cols = F, legend = TRUE,
clustering_distance_rows = "euclidean", border_color = FALSE)
grid
関数を使用して、関連するグロブを編集します。
_library(pheatmap)
set.seed(123)
df<-data.frame( matrix(sample(30), ncol = 5))
colnames(df)<-LETTERS[1:5]
subj<-c("P1", "P2","P3", "T1", "T2","T3")
rownames(df)<-subj
aka2 = data.frame(ID = factor(rep(c("Pat","Trea"), each=3)))
rownames(aka2)<-subj
aka3 = list(ID = c(Pat = "white", Trea="blue"))
pheatmap(t(scale(df)),
annotation_col = aka2,
annotation_colors = aka3[1],
annotation_legend = FALSE,
gaps_col = 3,
show_colnames = T, show_rownames = T, cluster_rows = F,
cluster_cols = F, legend = TRUE,
clustering_distance_rows = "euclidean", border_color = FALSE)
# Edit the relevant grob
library(grid)
grid.ls(grid.force()) # "col_annotation" looks like it's the one to edit
grid.gedit("col_annotation", gp = gpar(col="grey70"))
_
元のヒートマップにgrid.gget("col_annotation")$gp
を適用すると、_col_annotation
_にはgp
が設定されているがfill
がないcol
スロットがあることがわかります。編集後、fill
とcol
の両方が設定されます。
grobs
を編集して、注釈にのみ境界線の色を追加しようとしましたが、唯一の方法は、pheatmap
関数と基になるheatmap_motor
を変更することだと思います。 pheatmap2
およびheatmap_motor2
関数は次のとおりです。唯一の変更点は、pheatmap2
がheatmap_motor2
を呼び出し、border_color="gray"
のこの行heatmap_motor2
を呼び出すことです。 heatmap_motor2
で約2/3の方法で見つけることができます。
pheatmap2
pheatmap2 <-function (mat, color = colorRampPalette(rev(brewer.pal(n = 7,
name = "RdYlBu")))(100), kmeans_k = NA, breaks = NA, border_color = "grey60",
cellwidth = NA, cellheight = NA, scale = "none", cluster_rows = TRUE,
cluster_cols = TRUE, clustering_distance_rows = "euclidean",
clustering_distance_cols = "euclidean", clustering_method = "complete",
clustering_callback = identity2, cutree_rows = NA, cutree_cols = NA,
treeheight_row = ifelse(cluster_rows, 50, 0), treeheight_col = ifelse(cluster_cols,
50, 0), legend = TRUE, legend_breaks = NA, legend_labels = NA,
annotation_row = NA, annotation_col = NA, annotation = NA,
annotation_colors = NA, annotation_legend = TRUE, drop_levels = TRUE,
show_rownames = T, show_colnames = T, main = NA, fontsize = 10,
fontsize_row = fontsize, fontsize_col = fontsize, display_numbers = F,
number_format = "%.2f", number_color = "grey30", fontsize_number = 0.8 *
fontsize, gaps_row = NULL, gaps_col = NULL, labels_row = NULL,
labels_col = NULL, filename = NA, width = NA, height = NA,
silent = FALSE, ...)
{
if (is.null(labels_row)) {
labels_row = rownames(mat)
}
if (is.null(labels_col)) {
labels_col = colnames(mat)
}
mat = as.matrix(mat)
if (scale != "none") {
mat = scale_mat(mat, scale)
if (is.na2(breaks)) {
breaks = generate_breaks(mat, length(color), center = T)
}
}
if (!is.na(kmeans_k)) {
km = kmeans(mat, kmeans_k, iter.max = 100)
mat = km$centers
t = table(km$cluster)
labels_row = sprintf("Cluster: %s Size: %d", names(t),
t)
}
else {
km = NA
}
if (is.matrix(display_numbers) | is.data.frame(display_numbers)) {
if (nrow(display_numbers) != nrow(mat) | ncol(display_numbers) !=
ncol(mat)) {
stop("If display_numbers provided as matrix, its dimensions have to match with mat")
}
display_numbers = as.matrix(display_numbers)
fmat = matrix(as.character(display_numbers), nrow = nrow(display_numbers),
ncol = ncol(display_numbers))
fmat_draw = TRUE
}
else {
if (display_numbers) {
fmat = matrix(sprintf(number_format, mat), nrow = nrow(mat),
ncol = ncol(mat))
fmat_draw = TRUE
}
else {
fmat = matrix(NA, nrow = nrow(mat), ncol = ncol(mat))
fmat_draw = FALSE
}
}
if (cluster_rows) {
tree_row = cluster_mat(mat, distance = clustering_distance_rows,
method = clustering_method)
tree_row = clustering_callback(tree_row, mat)
mat = mat[tree_row$order, , drop = FALSE]
fmat = fmat[tree_row$order, , drop = FALSE]
labels_row = labels_row[tree_row$order]
if (!is.na(cutree_rows)) {
gaps_row = find_gaps(tree_row, cutree_rows)
}
else {
gaps_row = NULL
}
}
else {
tree_row = NA
treeheight_row = 0
}
if (cluster_cols) {
tree_col = cluster_mat(t(mat), distance = clustering_distance_cols,
method = clustering_method)
tree_col = clustering_callback(tree_col, t(mat))
mat = mat[, tree_col$order, drop = FALSE]
fmat = fmat[, tree_col$order, drop = FALSE]
labels_col = labels_col[tree_col$order]
if (!is.na(cutree_cols)) {
gaps_col = find_gaps(tree_col, cutree_cols)
}
else {
gaps_col = NULL
}
}
else {
tree_col = NA
treeheight_col = 0
}
attr(fmat, "draw") = fmat_draw
if (!is.na2(legend_breaks) & !is.na2(legend_labels)) {
if (length(legend_breaks) != length(legend_labels)) {
stop("Lengths of legend_breaks and legend_labels must be the same")
}
}
if (is.na2(breaks)) {
breaks = generate_breaks(as.vector(mat), length(color))
}
if (legend & is.na2(legend_breaks)) {
legend = grid.pretty(range(as.vector(breaks)))
names(legend) = legend
}
else if (legend & !is.na2(legend_breaks)) {
legend = legend_breaks[legend_breaks >= min(breaks) &
legend_breaks <= max(breaks)]
if (!is.na2(legend_labels)) {
legend_labels = legend_labels[legend_breaks >= min(breaks) &
legend_breaks <= max(breaks)]
names(legend) = legend_labels
}
else {
names(legend) = legend
}
}
else {
legend = NA
}
mat = scale_colours(mat, col = color, breaks = breaks)
if (is.na2(annotation_col) & !is.na2(annotation)) {
annotation_col = annotation
}
if (!is.na2(annotation_col)) {
annotation_col = annotation_col[colnames(mat), , drop = F]
}
if (!is.na2(annotation_row)) {
annotation_row = annotation_row[rownames(mat), , drop = F]
}
annotation = c(annotation_row, annotation_col)
annotation = annotation[unlist(lapply(annotation, function(x) !is.na2(x)))]
if (length(annotation) != 0) {
annotation_colors = generate_annotation_colours(annotation,
annotation_colors, drop = drop_levels)
}
else {
annotation_colors = NA
}
if (!show_rownames) {
labels_row = NULL
}
if (!show_colnames) {
labels_col = NULL
}
gt = heatmap_motor2(mat, border_color = border_color, cellwidth = cellwidth,
cellheight = cellheight, treeheight_col = treeheight_col,
treeheight_row = treeheight_row, tree_col = tree_col,
tree_row = tree_row, filename = filename, width = width,
height = height, breaks = breaks, color = color, legend = legend,
annotation_row = annotation_row, annotation_col = annotation_col,
annotation_colors = annotation_colors, annotation_legend = annotation_legend,
main = main, fontsize = fontsize, fontsize_row = fontsize_row,
fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number,
number_color = number_color, gaps_row = gaps_row, gaps_col = gaps_col,
labels_row = labels_row, labels_col = labels_col, ...)
if (is.na(filename) & !silent) {
grid.newpage()
grid.draw(gt)
}
invisible(list(tree_row = tree_row, tree_col = tree_col,
kmeans = km, gtable = gt))
}
heatmap_motor2
heatmap_motor2 <-function (matrix, border_color, cellwidth, cellheight, tree_col,
tree_row, treeheight_col, treeheight_row, filename, width,
height, breaks, color, legend, annotation_row, annotation_col,
annotation_colors, annotation_legend, main, fontsize, fontsize_row,
fontsize_col, fmat, fontsize_number, number_color, gaps_col,
gaps_row, labels_row, labels_col, ...)
{
lo = lo(coln = labels_col, rown = labels_row, nrow = nrow(matrix),
ncol = ncol(matrix), cellwidth = cellwidth, cellheight = cellheight,
treeheight_col = treeheight_col, treeheight_row = treeheight_row,
legend = legend, annotation_col = annotation_col, annotation_row = annotation_row,
annotation_colors = annotation_colors, annotation_legend = annotation_legend,
main = main, fontsize = fontsize, fontsize_row = fontsize_row,
fontsize_col = fontsize_col, gaps_row = gaps_row, gaps_col = gaps_col,
...)
res = lo$gt
mindim = lo$mindim
if (!is.na(filename)) {
if (is.na(height)) {
height = convertHeight(gtable_height(res), "inches",
valueOnly = T)
}
if (is.na(width)) {
width = convertWidth(gtable_width(res), "inches",
valueOnly = T)
}
r = regexpr("\\.[a-zA-Z]*$", filename)
if (r == -1)
stop("Improper filename")
ending = substr(filename, r + 1, r + attr(r, "match.length"))
f = switch(ending, pdf = function(x, ...) pdf(x, ...),
png = function(x, ...) png(x, units = "in", res = 300,
...), jpeg = function(x, ...) jpeg(x, units = "in",
res = 300, ...), jpg = function(x, ...) jpeg(x,
units = "in", res = 300, ...), tiff = function(x,
...) tiff(x, units = "in", res = 300, compression = "lzw",
...), bmp = function(x, ...) bmp(x, units = "in",
res = 300, ...), stop("File type should be: pdf, png, bmp, jpg, tiff"))
f(filename, height = height, width = width)
gt = heatmap_motor(matrix, cellwidth = cellwidth, cellheight = cellheight,
border_color = border_color, tree_col = tree_col,
tree_row = tree_row, treeheight_col = treeheight_col,
treeheight_row = treeheight_row, breaks = breaks,
color = color, legend = legend, annotation_col = annotation_col,
annotation_row = annotation_row, annotation_colors = annotation_colors,
annotation_legend = annotation_legend, filename = NA,
main = main, fontsize = fontsize, fontsize_row = fontsize_row,
fontsize_col = fontsize_col, fmat = fmat, fontsize_number = fontsize_number,
number_color = number_color, labels_row = labels_row,
labels_col = labels_col, gaps_col = gaps_col, gaps_row = gaps_row,
...)
grid.draw(gt)
dev.off()
return(gt)
}
if (mindim < 3)
border_color = NA
if (!is.na(main)) {
elem = draw_main(main, fontsize = 1.3 * fontsize, ...)
res = gtable_add_grob(res, elem, t = 1, l = 3, name = "main")
}
if (!is.na2(tree_col) & treeheight_col != 0) {
elem = draw_dendrogram(tree_col, gaps_col, horizontal = T)
res = gtable_add_grob(res, elem, t = 2, l = 3, name = "col_tree")
}
if (!is.na2(tree_row) & treeheight_row != 0) {
elem = draw_dendrogram(tree_row, gaps_row, horizontal = F)
res = gtable_add_grob(res, elem, t = 4, l = 1, name = "row_tree")
}
elem = draw_matrix(matrix, border_color, gaps_row, gaps_col,
fmat, fontsize_number, number_color)
res = gtable_add_grob(res, elem, t = 4, l = 3, clip = "off",
name = "matrix")
if (length(labels_col) != 0) {
pars = list(labels_col, gaps = gaps_col, fontsize = fontsize_col,
...)
elem = do.call(draw_colnames, pars)
res = gtable_add_grob(res, elem, t = 5, l = 3, clip = "off",
name = "col_names")
}
if (length(labels_row) != 0) {
pars = list(labels_row, gaps = gaps_row, fontsize = fontsize_row,
...)
elem = do.call(draw_rownames, pars)
res = gtable_add_grob(res, elem, t = 4, l = 4, clip = "off",
name = "row_names")
}
if (!is.na2(annotation_col)) {
converted_annotation = convert_annotations(annotation_col,
annotation_colors)
elem = draw_annotations(converted_annotation, border_color="gray", #Modified here
gaps_col, fontsize, horizontal = T)
res = gtable_add_grob(res, elem, t = 3, l = 3, clip = "off",
name = "col_annotation")
elem = draw_annotation_names(annotation_col, fontsize,
horizontal = T)
res = gtable_add_grob(res, elem, t = 3, l = 4, clip = "off",
name = "row_annotation_names")
}
if (!is.na2(annotation_row)) {
converted_annotation = convert_annotations(annotation_row,
annotation_colors)
elem = draw_annotations(converted_annotation, border_color,
gaps_row, fontsize, horizontal = F)
res = gtable_add_grob(res, elem, t = 4, l = 2, clip = "off",
name = "row_annotation")
if (length(labels_col) != 0) {
elem = draw_annotation_names(annotation_row, fontsize,
horizontal = F)
res = gtable_add_grob(res, elem, t = 5, l = 2, clip = "off",
name = "row_annotation_names")
}
}
annotation = c(annotation_col[length(annotation_col):1],
annotation_row[length(annotation_row):1])
annotation = annotation[unlist(lapply(annotation, function(x) !is.na2(x)))]
if (length(annotation) > 0 & annotation_legend) {
elem = draw_annotation_legend(annotation, annotation_colors,
border_color, fontsize = fontsize, ...)
t = ifelse(is.null(labels_row), 4, 3)
res = gtable_add_grob(res, elem, t = t, l = 6, b = 5,
clip = "off", name = "annotation_legend")
}
if (!is.na2(legend)) {
elem = draw_legend(color, breaks, legend, fontsize = fontsize,
...)
t = ifelse(is.null(labels_row), 4, 3)
res = gtable_add_grob(res, elem, t = t, l = 5, b = 5,
clip = "off", name = "legend")
}
return(res)
}
次に、これら2つの新しい関数をpheatmap
環境に追加することが重要です。 pheatmap
は、独自の環境でのみ見つけることができる関数を使用します。
environment(pheatmap2) <- asNamespace('pheatmap')
environment(heatmap_motor2) <- asNamespace('pheatmap')
pheatmap2
を使用した注釈の灰色の境界線:
library(pheatmap)
set.seed(123)
df<-data.frame( matrix(sample(30), ncol = 5))
colnames(df)<-LETTERS[1:5]
subj<-c("P1", "P2","P3", "T1", "T2","T3")
rownames(df)<-subj
aka2 = data.frame(ID = factor(rep(c("Pat","Trea"), each=3)))
rownames(aka2)<-subj
aka3 = list(ID = c(Pat = "white", Trea="blue"))
pheatmap2(t(scale(df)),
annotation_col = aka2,
annotation_colors = aka3[1], #aka3[1]
annotation_legend = FALSE,
gaps_col = 3,
show_colnames = T, show_rownames = T, cluster_rows = F,
cluster_cols = F, legend = TRUE,
clustering_distance_rows = "euclidean", border_color = FALSE)
Pheatmap annotation_col/annotation_row and borders and annotation_colors
ここでトピックから少し外れているかもしれないが、この質問の文脈に関連し、誰かのトラブルを救うかもしれないいくつかのコメントをするために。
Annotation_colまたはannotation_rowを設定した後、ヒートマップ内のすべてのセルに境界線を付けることに関心がある場合は、特定のレベルを超えるcellheightとcellwidthを明示的に指定する必要があります(cellwidth = 3、cellheight = 12を使用しました)。
Annotation_colorの構文はやや複雑で、名前付きコンポーネントを持つ名前付きベクトルのリストが必要です。例えば:
annotation_col = data.frame("Cell_of_Origin"=factor(dta.disc$cell.Origin,exclude=NULL,labels=c("GCB","non_GCB","Unclassifiable")))
rownames(annotation_col)=dta.disc$id
annotation_colors = list(Cell_of_Origin=c(GCB="red",non_GCB="green",Unclassifiable="yellow"))[1]
Cell_of_Originがannotation_col変数であり、GCB、non_GCB、Unclassifiableは因子のレベルです。
クラスターのグリッドではなく、注釈付きのクラスのグリッドを追加するのは奇妙に思えます(つまり、サブクラスがクラスター内で「奇妙に」分散している可能性があります)。私が遊んだオプションの1つは、各サブクラスの樹状図を個別に生成してから、樹状図をマージすることでした。そのような場合、cutree_cols/cutree_rowオプションを使用してクラスター間にギャップを追加できます。結果はあまり良くありませんでしたが、これは探索する方向かもしれません。
dend_gcb = reorder(as.dendrogram(hclust(dist(as.matrix(t(dta.disc[dta.disc$cell.Origin=="gcb",vars_reduced]))))),agglo.FUN=mean)
dend_ngcb = reorder(as.dendrogram(hclust(dist(as.matrix(t(dta.disc[dta.disc$cell.Origin=="non-gcb",vars_reduced]))))),agglo.FUN=mean)
dend_uncls =reorder(as.dendrogram(hclust(dist(as.matrix(t(dta.disc[is.na(dta.disc$cell.Origin),vars_reduced]))))),agglo.FUN=mean)
dend=merge(merge(dend_gcb,dend_ngcb),dend_uncls)