変数の異なるデータフレームがたくさんあります。それらをRに読み込んで、いくつかの変数が不足している列に列を追加して、いくつかの変数が監視されていない場合でも、すべてに共通の標準変数のセットがあるようにしたいと考えています。
言い換えれば...列が存在しない場合、tidyverseにNA
の列を追加する方法はありますか?私の現在の試みは、列が存在しない(top_speed
)場合に新しい変数を追加するために機能しますが、列がすでに存在する場合は失敗します(mpg
)(すべての観測値を最初の値Mazda RX4
に設定します)。
library(tidyverse)
mtcars %>%
tbl_df() %>%
rownames_to_column("car") %>%
mutate(top_speed = ifelse("top_speed" %in% names(.), top_speed, NA),
mpg = ifelse("mpg" %in% names(.), mpg, NA)) %>%
select(car, top_speed, mpg, everything())
# # A tibble: 32 x 13
# car top_speed mpg cyl disp hp drat wt qsec vs am gear carb
# <chr> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 Mazda RX4 NA 21 6 160.0 110 3.90 2.620 16.46 0 1 4 4
# 2 Mazda RX4 Wag NA 21 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# 3 Datsun 710 NA 21 4 108.0 93 3.85 2.320 18.61 1 1 4 1
# 4 Hornet 4 Drive NA 21 6 258.0 110 3.08 3.215 19.44 1 0 3 1
# 5 Hornet Sportabout NA 21 8 360.0 175 3.15 3.440 17.02 0 0 3 2
# 6 Valiant NA 21 6 225.0 105 2.76 3.460 20.22 1 0 3 1
# 7 Duster 360 NA 21 8 360.0 245 3.21 3.570 15.84 0 0 3 4
# 8 Merc 240D NA 21 4 146.7 62 3.69 3.190 20.00 1 0 4 2
# 9 Merc 230 NA 21 4 140.8 95 3.92 3.150 22.90 1 0 4 2
# 10 Merc 280 NA 21 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Tibbleのadd_column
を使用してヘルパー関数(または既に完全なdata.frame)を作成する必要がない別のオプション:
library(tibble)
cols <- c(top_speed = NA_real_, nhj = NA_real_, mpg = NA_real_)
add_column(mtcars, !!!cols[setdiff(names(cols), names(mtcars))])
列を作成するヘルパー関数を作成できます
fncols <- function(data, cname) {
add <-cname[!cname%in%names(data)]
if(length(add)!=0) data[add] <- NA
data
}
fncols(mtcars, "mpg")
fncols(mtcars, c("topspeed","nhj","mpg"))
以下を試してください、
library(tidyverse)
mtcars %>%
tbl_df() %>%
rownames_to_column("car") %>%
mutate(top_speed = if ("top_speed" %in% names(.)){return(top_speed)}else{return(NA)},
mpg = if ("mpg" %in% names(.)){return(mpg)}else{return(NA)}) %>%
select(car, top_speed, mpg, everything())
# A tibble: 32 x 13
car top_speed mpg cyl disp hp drat wt qsec vs am gear carb
<chr> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Mazda RX4 NA 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 Mazda RX4 Wag NA 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 Datsun 710 NA 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
4 Hornet 4 Drive NA 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
5 Hornet Sportabout NA 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
6 Valiant NA 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
7 Duster 360 NA 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
8 Merc 240D NA 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
9 Merc 230 NA 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
10 Merc 280 NA 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
# ... with 22 more rows
Ifelse()はオブジェクトからクラスを継承しないと思います。
チェックするすべての名前を含む空のデータフレームがある場合は、bind_rows
を使用して列を追加できます。
purrr:map_dfr
を使用して、適切な列名で空のtibble
を作成しました。
columns = c("top_speed", "mpg") %>%
map_dfr( ~tibble(!!.x := logical() ) )
# A tibble: 0 x 2
# ... with 2 variables: top_speed <lgl>, mpg <lgl>
bind_rows(columns, mtcars)
# A tibble: 32 x 12
top_speed mpg cyl disp hp drat wt qsec vs am gear carb
<lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
2 NA 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
3 NA 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
次のようにrowwise
関数を使用できます。
library(tidyverse)
mtcars %>%
tbl_df() %>%
rownames_to_column("car") %>%
rowwise() %>%
mutate(top_speed = ifelse("top_speed" %in% names(.), top_speed, NA),
mpg = ifelse("mpg" %in% names(.), mpg, NA)) %>%
select(car, top_speed, mpg, everything())
新しいdata.frameの列をNAで埋められた偽の完全なdata.frameにバインドし、複製された列の名前を変更して、元の名前のみをフィルタリングできます。
# your default complete vector of col names
standard.variables = names(mtcars)
# prep
default=mtcars %>% mutate_all(.funs=function(x) NA)
# treat with a data.frame missing 3 columns
test=mtcars %>% select(-mpg, -disp, -am)
bind_cols(test, default) %>% setNames(make.names(names(.), unique=TRUE)) %>%
select_(.dots=standard.variables) %>% head(2)
#### mpg cyl disp hp drat wt qsec vs am gear carb
#### 1 NA 6 NA 110 3.9 2.620 16.46 0 NA 4 4
#### 2 NA 6 NA 110 3.9 2.875 17.02 0 NA 4 4
必要な列がすべてあるデータフレームがすでにある場合は、
library(tidyverse)
df_with_required_columns =
mtcars %>%
mutate(top_speed = NA_real_) %>%
select(top_speed, mpg)
その後、すべての行を単にbind_rows
フィルタリングして除外できます。
mtcars %>%
rownames_to_column("car") %>%
bind_rows( df_with_required_columns %>% filter(F) ) %>%
select(car, top_speed, mpg, everything())
欠落している列はdf_with_required_columns
から型を取得することに注意してください。