web-dev-qa-db-ja.com

グループごとに上位N個の値を選択します

これは、 r-helpメーリングリストでの質問 への応答です。

ここにlotsの例sqlを使用してグループごとに上位値を見つける方法ので、 R sqldfパッケージを使用して、その知識を簡単に変換できます。

例:mtcarscylでグループ化されている場合、cylの異なる値ごとの上位3つのレコードがあります。この場合、関係は除外されますが、関係を処理するためのいくつかの異なる方法を示すことは素晴らしいことです。

                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb ranks
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1   2.0
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2   1.0
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1   2.0
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4   3.0
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4   1.0
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4   1.5
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4   1.5
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4   3.0

グループごとに上位または下位(最大または最小)Nレコードを見つける方法

37
Anthony Damico

これは、data.tableキーの設定中にソートを実行します。

したがって、上位3レコードをソート(昇順)で取得する場合、

require(data.table)
d <- data.table(mtcars, key="cyl")
d[, head(.SD, 3), by=cyl]

それをします。

降順が必要な場合

d[, tail(.SD, 3), by=cyl] # Thanks @MatthewDowle

編集:終了mpg列を使用して関係を整理します

d <- data.table(mtcars, key="cyl")
d.out <- d[, .SD[mpg %in% head(sort(unique(mpg)), 3)], by=cyl]

#     cyl  mpg  disp  hp drat    wt  qsec vs am gear carb rank
#  1:   4 22.8 108.0  93 3.85 2.320 18.61  1  1    4    1   11
#  2:   4 22.8 140.8  95 3.92 3.150 22.90  1  0    4    2    1
#  3:   4 21.5 120.1  97 3.70 2.465 20.01  1  0    3    1    8
#  4:   4 21.4 121.0 109 4.11 2.780 18.60  1  1    4    2    6
#  5:   6 18.1 225.0 105 2.76 3.460 20.22  1  0    3    1    7
#  6:   6 19.2 167.6 123 3.92 3.440 18.30  1  0    4    4    1
#  7:   6 17.8 167.6 123 3.92 3.440 18.90  1  0    4    4    2
#  8:   8 14.3 360.0 245 3.21 3.570 15.84  0  0    3    4    7
#  9:   8 10.4 472.0 205 2.93 5.250 17.98  0  0    3    4   14
# 10:   8 10.4 460.0 215 3.00 5.424 17.82  0  0    3    4    5
# 11:   8 13.3 350.0 245 3.73 3.840 15.41  0  0    3    4    3

# and for last N elements, of course it is straightforward
d.out <- d[, .SD[mpg %in% tail(sort(unique(mpg)), 3)], by=cyl]
39
Arun

何でも並べ替えるだけです(たとえば、mpg、これに関する質問は明確ではありません)

mt <- mtcars[order(mtcars$mpg), ]

次に、by関数を使用して、各グループの上位n行を取得します

d <- by(mt, mt["cyl"], head, n=4)

結果をdata.frameにしたい場合:

Reduce(rbind, d)

編集:タイの処理はより困難ですが、すべてのタイが必要な場合:

by(mt, mt["cyl"], function(x) x[rank(x$mpg) %in% sort(unique(rank(x$mpg)))[1:4], ])

もう1つのアプローチは、他の情報に基づいて関係を解除することです。たとえば、

mt <- mtcars[order(mtcars$mpg, mtcars$hp), ]
by(mt, mt["cyl"], head, n=4)
19
Ista

dplyrはトリックを行います

mtcars %>% 
arrange(desc(mpg)) %>% 
group_by(cyl) %>% slice(1:2)


 mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1  33.9     4  71.1    65  4.22 1.835 19.90     1     1     4     1
2  32.4     4  78.7    66  4.08 2.200 19.47     1     1     4     1
3  21.4     6 258.0   110  3.08 3.215 19.44     1     0     3     1
4  21.0     6 160.0   110  3.90 2.620 16.46     0     1     4     4
5  19.2     8 400.0   175  3.08 3.845 17.05     0     0     3     2
6  18.7     8 360.0   175  3.15 3.440 17.02     0     0     3     2
10
Azam Yahya

Mtcars $ mpgの4番目の位置にタイがあった場合、これはすべてのタイを返します。

top_mpg <- mtcars[ mtcars$mpg >= mtcars$mpg[order(mtcars$mpg, decreasing=TRUE)][4] , ]

> top_mpg
                mpg cyl disp  hp drat    wt  qsec vs am gear carb
Fiat 128       32.4   4 78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic    30.4   4 75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla 33.9   4 71.1  65 4.22 1.835 19.90  1  1    4    1
Lotus Europa   30.4   4 95.1 113 3.77 1.513 16.90  1  1    5    2

3-4の位置にネクタイがあるので、4を3に変更してテストできますが、それでも4つのアイテムが返されます。これは論理的なインデックス作成であり、NAを削除する句を追加するか、論理式をwhich()で囲む必要があります。これを「by」で実行することはそれほど難しくありません:

 Reduce(rbind,  by(mtcars, mtcars$cyl, 
        function(d) d[ d$mpg >= d$mpg[order(d$mpg, decreasing=TRUE)][4] , ]) )
#-------------
                   mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Fiat 128          32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic       30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla    33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Lotus Europa      30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Mazda RX4         21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Hornet 4 Drive    21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Ferrari Dino      19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Merc 450SE        16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL        17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Pontiac Firebird  19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2

@Istaに私の提案を組み込む:

Reduce(rbind,  by(mtcars, mtcars$cyl, function(d) d[ d$mpg <= sort( d$mpg )[3] , ]) )
4
42-

データベースを係数で分割し、別の目的の変数で順序付け、各係数(カテゴリ)で必要な行数を抽出し、これらをデータベースに結合する関数を作成できます。

top<-function(x, num, c1,c2){
sorted<-x[with(x,order(x[,c1],x[,c2],decreasing=T)),]
splits<-split(sorted,sorted[,c1])
df<-lapply(splits,head,num)
do.call(rbind.data.frame,df)}

xはデータフレームです。

numは、表示する行の数です。

c1は、分割したい変数の列numberです。

c2は、ランク付けまたはタイを処理する変数の列numberです。

Mtcarsデータを使用して、関数は各シリンダークラスの3最も重い車(mtcars $ wtは6番目の列)を抽出します(mtcars $ cylは2番目の列です)

 top(mtcars,3,2,6)
                         mpg cyl  disp  hp drat    wt  qsec vs am gear carb
 4.Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
 4.Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
 4.Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2
 6.Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
 6.Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
 6.Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
 8.Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
 8.Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
 8.Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4

また、削除することにより、lapply関数のheadtailORに変更することにより、クラスで最も軽量になります。 order関数の減少= T引数は、デフォルトの減少= Fに戻ります。

3

@Istaソリューションを好みます。原因は追加のパッケージを必要とせず、シンプルです。
data.tableソリューションの修正も私の問題を解決し、より一般的です。
私のdata.frameは

> str(df)
'data.frame':   579 obs. of  11 variables:
 $ trees     : num  2000 5000 1000 2000 1000 1000 2000 5000 5000 1000 ...
 $ interDepth: num  2 3 5 2 3 4 4 2 3 5 ...
 $ minObs    : num  6 4 1 4 10 6 10 10 6 6 ...
 $ shrinkage : num  0.01 0.001 0.01 0.005 0.01 0.01 0.001 0.005 0.005 0.001     ...
 $ G1        : num  0 2 2 2 2 2 8 8 8 8 ...
 $ G2        : logi  FALSE FALSE FALSE FALSE FALSE FALSE ...
 $ qx        : num  0.44 0.43 0.419 0.439 0.43 ...
 $ efet      : num  43.1 40.6 39.9 39.2 38.6 ...
 $ prec      : num  0.606 0.593 0.587 0.582 0.574 0.578 0.576 0.579 0.588 0.585 ...
 $ sens      : num  0.575 0.57 0.573 0.575 0.587 0.574 0.576 0.566 0.542 0.545 ...
 $ acu       : num  0.631 0.645 0.647 0.648 0.655 0.647 0.619 0.611 0.591 0.594 ...

data.tableソリューションには、orderiが必要です。

> require(data.table)
> dt1 <- data.table(df)
> dt2 = dt1[order(-efet, G1, G2), head(.SD, 3), by = .(G1, G2)]
> dt2
    G1    G2 trees interDepth minObs shrinkage        qx   efet  prec  sens   acu
 1:  0 FALSE  2000          2      6     0.010 0.4395953 43.066 0.606 0.575 0.631
 2:  0 FALSE  2000          5      1     0.005 0.4294718 37.554 0.583 0.548 0.607
 3:  0 FALSE  5000          2      6     0.005 0.4395753 36.981 0.575 0.559 0.616
 4:  2 FALSE  5000          3      4     0.001 0.4296346 40.624 0.593 0.570 0.645
 5:  2 FALSE  1000          5      1     0.010 0.4186802 39.915 0.587 0.573 0.647
 6:  2 FALSE  2000          2      4     0.005 0.4390503 39.164 0.582 0.575 0.648
 7:  8 FALSE  2000          4     10     0.001 0.4511349 38.240 0.576 0.576 0.619
 8:  8 FALSE  5000          2     10     0.005 0.4469665 38.064 0.579 0.566 0.611
 9:  8 FALSE  5000          3      6     0.005 0.4426952 37.888 0.588 0.542 0.591
10:  2  TRUE  5000          3      4     0.001 0.3812878 21.057 0.510 0.479 0.615
11:  2  TRUE  2000          3     10     0.005 0.3790536 20.127 0.507 0.470 0.608
12:  2  TRUE  1000          5      4     0.001 0.3690911 18.981 0.500 0.475 0.611
13:  8  TRUE  5000          6     10     0.010 0.2865042 16.870 0.497 0.435 0.635
14:  0  TRUE  2000          6      4     0.010 0.3192862  9.779 0.460 0.433 0.621  

何らかの理由で、それはポイントされた方法を順序付けしません(おそらくグループによる順序付けのため)。したがって、別の順序付けが行われます。

> dt2[order(G1, G2)]
    G1    G2 trees interDepth minObs shrinkage        qx   efet  prec  sens   acu
 1:  0 FALSE  2000          2      6     0.010 0.4395953 43.066 0.606 0.575 0.631
 2:  0 FALSE  2000          5      1     0.005 0.4294718 37.554 0.583 0.548 0.607
 3:  0 FALSE  5000          2      6     0.005 0.4395753 36.981 0.575 0.559 0.616
 4:  0  TRUE  2000          6      4     0.010 0.3192862  9.779 0.460 0.433 0.621
 5:  2 FALSE  5000          3      4     0.001 0.4296346 40.624 0.593 0.570 0.645
 6:  2 FALSE  1000          5      1     0.010 0.4186802 39.915 0.587 0.573 0.647
 7:  2 FALSE  2000          2      4     0.005 0.4390503 39.164 0.582 0.575 0.648
 8:  2  TRUE  5000          3      4     0.001 0.3812878 21.057 0.510 0.479 0.615
 9:  2  TRUE  2000          3     10     0.005 0.3790536 20.127 0.507 0.470 0.608
10:  2  TRUE  1000          5      4     0.001 0.3690911 18.981 0.500 0.475 0.611
11:  8 FALSE  2000          4     10     0.001 0.4511349 38.240 0.576 0.576 0.619
12:  8 FALSE  5000          2     10     0.005 0.4469665 38.064 0.579 0.566 0.611
13:  8 FALSE  5000          3      6     0.005 0.4426952 37.888 0.588 0.542 0.591
14:  8  TRUE  5000          6     10     0.010 0.2865042 16.870 0.497 0.435 0.635
0
xm1