これは、 r-helpメーリングリストでの質問 への応答です。
ここにlotsの例sql
を使用してグループごとに上位値を見つける方法ので、 R sqldf
パッケージを使用して、その知識を簡単に変換できます。
例:mtcars
がcyl
でグループ化されている場合、cyl
の異なる値ごとの上位3つのレコードがあります。この場合、関係は除外されますが、関係を処理するためのいくつかの異なる方法を示すことは素晴らしいことです。
mpg cyl disp hp drat wt qsec vs am gear carb ranks
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 2.0
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 1.0
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 2.0
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 3.0
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 1.0
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 1.5
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 1.5
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 3.0
グループごとに上位または下位(最大または最小)Nレコードを見つける方法
これは、data.table
キーの設定中にソートを実行します。
したがって、上位3レコードをソート(昇順)で取得する場合、
require(data.table)
d <- data.table(mtcars, key="cyl")
d[, head(.SD, 3), by=cyl]
それをします。
降順が必要な場合
d[, tail(.SD, 3), by=cyl] # Thanks @MatthewDowle
編集:終了mpg
列を使用して関係を整理します:
d <- data.table(mtcars, key="cyl")
d.out <- d[, .SD[mpg %in% head(sort(unique(mpg)), 3)], by=cyl]
# cyl mpg disp hp drat wt qsec vs am gear carb rank
# 1: 4 22.8 108.0 93 3.85 2.320 18.61 1 1 4 1 11
# 2: 4 22.8 140.8 95 3.92 3.150 22.90 1 0 4 2 1
# 3: 4 21.5 120.1 97 3.70 2.465 20.01 1 0 3 1 8
# 4: 4 21.4 121.0 109 4.11 2.780 18.60 1 1 4 2 6
# 5: 6 18.1 225.0 105 2.76 3.460 20.22 1 0 3 1 7
# 6: 6 19.2 167.6 123 3.92 3.440 18.30 1 0 4 4 1
# 7: 6 17.8 167.6 123 3.92 3.440 18.90 1 0 4 4 2
# 8: 8 14.3 360.0 245 3.21 3.570 15.84 0 0 3 4 7
# 9: 8 10.4 472.0 205 2.93 5.250 17.98 0 0 3 4 14
# 10: 8 10.4 460.0 215 3.00 5.424 17.82 0 0 3 4 5
# 11: 8 13.3 350.0 245 3.73 3.840 15.41 0 0 3 4 3
# and for last N elements, of course it is straightforward
d.out <- d[, .SD[mpg %in% tail(sort(unique(mpg)), 3)], by=cyl]
何でも並べ替えるだけです(たとえば、mpg、これに関する質問は明確ではありません)
mt <- mtcars[order(mtcars$mpg), ]
次に、by関数を使用して、各グループの上位n行を取得します
d <- by(mt, mt["cyl"], head, n=4)
結果をdata.frameにしたい場合:
Reduce(rbind, d)
編集:タイの処理はより困難ですが、すべてのタイが必要な場合:
by(mt, mt["cyl"], function(x) x[rank(x$mpg) %in% sort(unique(rank(x$mpg)))[1:4], ])
もう1つのアプローチは、他の情報に基づいて関係を解除することです。たとえば、
mt <- mtcars[order(mtcars$mpg, mtcars$hp), ]
by(mt, mt["cyl"], head, n=4)
dplyr
はトリックを行います
mtcars %>%
arrange(desc(mpg)) %>%
group_by(cyl) %>% slice(1:2)
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
2 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
3 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
5 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
6 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Mtcars $ mpgの4番目の位置にタイがあった場合、これはすべてのタイを返します。
top_mpg <- mtcars[ mtcars$mpg >= mtcars$mpg[order(mtcars$mpg, decreasing=TRUE)][4] , ]
> top_mpg
mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
3-4の位置にネクタイがあるので、4を3に変更してテストできますが、それでも4つのアイテムが返されます。これは論理的なインデックス作成であり、NAを削除する句を追加するか、論理式をwhich()で囲む必要があります。これを「by」で実行することはそれほど難しくありません:
Reduce(rbind, by(mtcars, mtcars$cyl,
function(d) d[ d$mpg >= d$mpg[order(d$mpg, decreasing=TRUE)][4] , ]) )
#-------------
mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
@Istaに私の提案を組み込む:
Reduce(rbind, by(mtcars, mtcars$cyl, function(d) d[ d$mpg <= sort( d$mpg )[3] , ]) )
データベースを係数で分割し、別の目的の変数で順序付け、各係数(カテゴリ)で必要な行数を抽出し、これらをデータベースに結合する関数を作成できます。
top<-function(x, num, c1,c2){
sorted<-x[with(x,order(x[,c1],x[,c2],decreasing=T)),]
splits<-split(sorted,sorted[,c1])
df<-lapply(splits,head,num)
do.call(rbind.data.frame,df)}
xはデータフレームです。
numは、表示する行の数です。
c1は、分割したい変数の列numberです。
c2は、ランク付けまたはタイを処理する変数の列numberです。
Mtcarsデータを使用して、関数は各シリンダークラスの3最も重い車(mtcars $ wtは6番目の列)を抽出します(mtcars $ cylは2番目の列です)
top(mtcars,3,2,6)
mpg cyl disp hp drat wt qsec vs am gear carb
4.Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
4.Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
4.Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
6.Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
6.Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
6.Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
8.Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
8.Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
8.Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
また、削除することにより、lapply関数のheadをtailORに変更することにより、クラスで最も軽量になります。 order関数の減少= T引数は、デフォルトの減少= Fに戻ります。
@Istaソリューションを好みます。原因は追加のパッケージを必要とせず、シンプルです。data.table
ソリューションの修正も私の問題を解決し、より一般的です。
私のdata.frameは
> str(df)
'data.frame': 579 obs. of 11 variables:
$ trees : num 2000 5000 1000 2000 1000 1000 2000 5000 5000 1000 ...
$ interDepth: num 2 3 5 2 3 4 4 2 3 5 ...
$ minObs : num 6 4 1 4 10 6 10 10 6 6 ...
$ shrinkage : num 0.01 0.001 0.01 0.005 0.01 0.01 0.001 0.005 0.005 0.001 ...
$ G1 : num 0 2 2 2 2 2 8 8 8 8 ...
$ G2 : logi FALSE FALSE FALSE FALSE FALSE FALSE ...
$ qx : num 0.44 0.43 0.419 0.439 0.43 ...
$ efet : num 43.1 40.6 39.9 39.2 38.6 ...
$ prec : num 0.606 0.593 0.587 0.582 0.574 0.578 0.576 0.579 0.588 0.585 ...
$ sens : num 0.575 0.57 0.573 0.575 0.587 0.574 0.576 0.566 0.542 0.545 ...
$ acu : num 0.631 0.645 0.647 0.648 0.655 0.647 0.619 0.611 0.591 0.594 ...
data.table
ソリューションには、order
でi
が必要です。
> require(data.table)
> dt1 <- data.table(df)
> dt2 = dt1[order(-efet, G1, G2), head(.SD, 3), by = .(G1, G2)]
> dt2
G1 G2 trees interDepth minObs shrinkage qx efet prec sens acu
1: 0 FALSE 2000 2 6 0.010 0.4395953 43.066 0.606 0.575 0.631
2: 0 FALSE 2000 5 1 0.005 0.4294718 37.554 0.583 0.548 0.607
3: 0 FALSE 5000 2 6 0.005 0.4395753 36.981 0.575 0.559 0.616
4: 2 FALSE 5000 3 4 0.001 0.4296346 40.624 0.593 0.570 0.645
5: 2 FALSE 1000 5 1 0.010 0.4186802 39.915 0.587 0.573 0.647
6: 2 FALSE 2000 2 4 0.005 0.4390503 39.164 0.582 0.575 0.648
7: 8 FALSE 2000 4 10 0.001 0.4511349 38.240 0.576 0.576 0.619
8: 8 FALSE 5000 2 10 0.005 0.4469665 38.064 0.579 0.566 0.611
9: 8 FALSE 5000 3 6 0.005 0.4426952 37.888 0.588 0.542 0.591
10: 2 TRUE 5000 3 4 0.001 0.3812878 21.057 0.510 0.479 0.615
11: 2 TRUE 2000 3 10 0.005 0.3790536 20.127 0.507 0.470 0.608
12: 2 TRUE 1000 5 4 0.001 0.3690911 18.981 0.500 0.475 0.611
13: 8 TRUE 5000 6 10 0.010 0.2865042 16.870 0.497 0.435 0.635
14: 0 TRUE 2000 6 4 0.010 0.3192862 9.779 0.460 0.433 0.621
何らかの理由で、それはポイントされた方法を順序付けしません(おそらくグループによる順序付けのため)。したがって、別の順序付けが行われます。
> dt2[order(G1, G2)]
G1 G2 trees interDepth minObs shrinkage qx efet prec sens acu
1: 0 FALSE 2000 2 6 0.010 0.4395953 43.066 0.606 0.575 0.631
2: 0 FALSE 2000 5 1 0.005 0.4294718 37.554 0.583 0.548 0.607
3: 0 FALSE 5000 2 6 0.005 0.4395753 36.981 0.575 0.559 0.616
4: 0 TRUE 2000 6 4 0.010 0.3192862 9.779 0.460 0.433 0.621
5: 2 FALSE 5000 3 4 0.001 0.4296346 40.624 0.593 0.570 0.645
6: 2 FALSE 1000 5 1 0.010 0.4186802 39.915 0.587 0.573 0.647
7: 2 FALSE 2000 2 4 0.005 0.4390503 39.164 0.582 0.575 0.648
8: 2 TRUE 5000 3 4 0.001 0.3812878 21.057 0.510 0.479 0.615
9: 2 TRUE 2000 3 10 0.005 0.3790536 20.127 0.507 0.470 0.608
10: 2 TRUE 1000 5 4 0.001 0.3690911 18.981 0.500 0.475 0.611
11: 8 FALSE 2000 4 10 0.001 0.4511349 38.240 0.576 0.576 0.619
12: 8 FALSE 5000 2 10 0.005 0.4469665 38.064 0.579 0.566 0.611
13: 8 FALSE 5000 3 6 0.005 0.4426952 37.888 0.588 0.542 0.591
14: 8 TRUE 5000 6 10 0.010 0.2865042 16.870 0.497 0.435 0.635