web-dev-qa-db-ja.com

フィルター機能の簡単な例、特に再帰的なオプション

Rのfilter関数のいくつかの単純な(つまり、数学表記がない、長い形式の再現可能なコード)例を探しています。たたみ込みメソッドに頭を悩ませているようですが、再帰的なオプションの一般化に行き詰まっています。私はさまざまなドキュメントを読んで戦いましたが、ヘルプは私には少し不透明です。

ここに私がこれまでに考え出した例があります:

_# Set some values for filter components
f1 <- 1; f2 <- 1; f3 <- 1;
_

そして私たちは行きます:

_# basic convolution filter
filter(1:5,f1,method="convolution")
[1] 1 2 3 4 5

#equivalent to:
x[1] * f1 
x[2] * f1 
x[3] * f1 
x[4] * f1 
x[5] * f1 

# convolution with 2 coefficients in filter
filter(1:5,c(f1,f2),method="convolution")
[1]  3  5  7  9 NA

#equivalent to:
x[1] * f2 + x[2] * f1
x[2] * f2 + x[3] * f1
x[3] * f2 + x[4] * f1 
x[4] * f2 + x[5] * f1 
x[5] * f2 + x[6] * f1

# convolution with 3 coefficients in filter
filter(1:5,c(f1,f2,f3),method="convolution")
[1] NA  6  9 12 NA

#equivalent to:
 NA  * f3 + x[1] * f2 + x[2] * f1  #x[0] = doesn't exist/NA
x[1] * f3 + x[2] * f2 + x[3] * f1
x[2] * f3 + x[3] * f2 + x[4] * f1 
x[3] * f3 + x[4] * f2 + x[5] * f1 
x[4] * f3 + x[5] * f2 + x[6] * f1
_

さて、貧しい小さな脳幹を傷つけています。私はこの投稿で情報を使用して最も基本的な例を理解することができました: https://stackoverflow.com/a/11552765/4968

_filter(1:5, f1, method="recursive")
[1]  1  3  6 10 15

#equivalent to:

x[1]
x[2] + f1*x[1]
x[3] + f1*x[2] + f1^2*x[1]
x[4] + f1*x[3] + f1^2*x[2] + f1^3*x[1]
x[5] + f1*x[4] + f1^2*x[3] + f1^3*x[2] + f1^4*x[1]
_

誰かがfilter = c(f1,f2)filter = c(f1,f2,f3)を使用した再帰バージョンの畳み込みの例について、上記と同じコードを提供できますか?

回答は関数の結果と一致する必要があります。

_filter(1:5, c(f1,f2), method="recursive")
[1]  1  3  7 14 26

filter(1:5, c(f1,f2,f3), method="recursive")
[1]  1  3  7 15 30
_

編集

@agstudyのきちんとした答えを使用して確定するには:

_> filter(1:5, f1, method="recursive")
Time Series:
Start = 1 
End = 5 
Frequency = 1 
[1]  1  3  6 10 15
> y1 <- x[1]                                            
> y2 <- x[2] + f1*y1      
> y3 <- x[3] + f1*y2 
> y4 <- x[4] + f1*y3 
> y5 <- x[5] + f1*y4 
> c(y1,y2,y3,y4,y5)
[1]  1  3  6 10 15
_

そして...

_> filter(1:5, c(f1,f2), method="recursive")
Time Series:
Start = 1 
End = 5 
Frequency = 1 
[1]  1  3  7 14 26
> y1 <- x[1]                                            
> y2 <- x[2] + f1*y1      
> y3 <- x[3] + f1*y2 + f2*y1
> y4 <- x[4] + f1*y3 + f2*y2
> y5 <- x[5] + f1*y4 + f2*y3
> c(y1,y2,y3,y4,y5)
[1]  1  3  7 14 26
_

そして...

_> filter(1:5, c(f1,f2,f3), method="recursive")
Time Series:
Start = 1 
End = 5 
Frequency = 1 
[1]  1  3  7 15 30
> y1 <- x[1]                                            
> y2 <- x[2] + f1*y1      
> y3 <- x[3] + f1*y2 + f2*y1
> y4 <- x[4] + f1*y3 + f2*y2 + f3*y1
> y5 <- x[5] + f1*y4 + f2*y3 + f3*y2
> c(y1,y2,y3,y4,y5)
[1]  1  3  7 15 30
_
25
thelatemail

再帰的なケースでは、xiの表現を拡張する必要はないと思います。 「再帰的」の鍵は、以前のyに関して右手の表現を表現することです。

フィルターサイズの観点から考えるのが好きです。

フィルターサイズ= 1

y1 <- x1                                            
y2 <- x2 + f1*y1      
y3 <- x3 + f1*y2 
y4 <- x4 + f1*y3 
y5 <- x5 + f1*y4 

フィルターサイズ= 2

y1 <- x1                                            
y2 <- x2 + f1*y1      
y3 <- x3 + f1*y2 + f2*y1    # apply the filter for the past value and add current input
y4 <- x4 + f1*y3 + f2*y2
y5 <- x5 + f1*y4 + f2*y3
20
agstudy

これは、再帰フィルタリングが実際に行っていることを視覚化するのに最も役立つとわかった例です。

(x <- rep(1, 10))
# [1] 1 1 1 1 1 1 1 1 1 1

as.vector(filter(x, c(1), method="recursive"))  ## Equivalent to cumsum()
#  [1]  1  2  3  4  5  6  7  8  9 10
as.vector(filter(x, c(0,1), method="recursive"))
#  [1] 1 1 2 2 3 3 4 4 5 5
as.vector(filter(x, c(0,0,1), method="recursive"))
#  [1] 1 1 1 2 2 2 3 3 3 4
as.vector(filter(x, c(0,0,0,1), method="recursive"))
#  [1] 1 1 1 1 2 2 2 2 3 3
as.vector(filter(x, c(0,0,0,0,1), method="recursive"))
#  [1] 1 1 1 1 1 2 2 2 2 2
3
Josh O'Brien

再帰的では、「フィルター」のシーケンスは、シーケンスの以前の合計または出力値の加算係数です。 filter=c(1,1)を使用すると、「シーケンスxのi番目のコンポーネントを取得して、前のステップの結果の1倍とその前のステップの結果の1倍に追加する」ことになります。ここにいくつかの例を示します

遅延効果の表記は次のようになります。

## only one filter, so autoregressive cumsum only looks "one sequence behind"
> filter(1:5, c(2), method='recursive')
Time Series:
Start = 1 
End = 5 
Frequency = 1 
[1]  1  4 11 26 57

1 = 1
2*1 + 2 = 4
2*(2*1 + 2) + 3 = 11
...

## filter with lag in it, looks two sequences back
> filter(1:5, c(0, 2), method='recursive')
Time Series:
Start = 1 
End = 5 
Frequency = 1 
[1]  1  2  5  8 15

1= 1
0*1 + 2 = 2
2*1 + 0*(0*1 + 2) + 3 = 5
2*(0*1 + 2) + 0 * (2*1 + 0*(0*1 + 2) + 3) + 4 = 8
2*(2*1 + 0*(0*1 + 2) + 3) + 0*(2*(0*1 + 2) + 0 * (2*1 + 0*(0*1 + 2) + 3) + 4) + 5 = 15

そこに累積パターンが見えますか?別の言い方をすると。

1 = 1
0*1 + 2 = 2
2*1 + 0*2 + 3 = 5
2*2 + 0*5 + 4 = 8
2*5 + 0*8 + 5 = 15
2
AdamO

私はこれを読むのに1時間費やしました、以下はMatlabと比較して私の要約です

[〜#〜] notation [〜#〜]:Matlabのコマンド= Rのコマンド

filter([1,1,1], 1, data) = filter(data, [1,1,1], method = "convolution") ; but the difference is that the first 2 elements are NA 


filter(1, [1,-1,-1,-1], data) = filter(data, [1,1,1], method = "recursive")

DSPの一部を知っている場合、再帰はIIRのため、畳み込みはFIRのためです

0
user2006050