web-dev-qa-db-ja.com

マルチクラス分類のためのgbmメソッドによるキャレットの使用

マルチクラス分類の問題を解決し、Generalized Boosted Models(Rのgbmパッケージ)を使用しようとしています。私が直面した問題:method="gbm"を使用したキャレットのtrain関数はマルチクラスデータで正しく機能しないようです。簡単な例を以下に示します。

library(gbm)
library(caret)
data(iris)
fitControl <- trainControl(method="repeatedcv",
                           number=5,
                           repeats=1,
                           verboseIter=TRUE)
set.seed(825)
gbmFit <- train(Species ~ ., data=iris,
                method="gbm",
                trControl=fitControl,
                verbose=FALSE)
gbmFit

出力は

+ Fold1.Rep1: interaction.depth=1, shrinkage=0.1, n.trees=150 
predictions failed for Fold1.Rep1: interaction.depth=1, shrinkage=0.1, n.trees=150 
- Fold1.Rep1: interaction.depth=1, shrinkage=0.1, n.trees=150 
+ Fold1.Rep1: interaction.depth=2, shrinkage=0.1, n.trees=150 
...
+ Fold5.Rep1: interaction.depth=3, shrinkage=0.1, n.trees=150 
predictions failed for Fold5.Rep1: interaction.depth=3, shrinkage=0.1, n.trees=150 
- Fold5.Rep1: interaction.depth=3, shrinkage=0.1, n.trees=150 
Aggregating results
Selecting tuning parameters
Fitting interaction.depth = numeric(0), n.trees = numeric(0), shrinkage = numeric(0) on full training set
Error in if (interaction.depth < 1) { : argument is of length zero

それでも、キャレットラッパーなしでgbmを使おうとすると、素晴らしい結果が得られます。

set.seed(1365)
train <- createDataPartition(iris$Species, p=0.7, list=F)
train.iris <- iris[train,]
valid.iris <- iris[-train,]
gbm.fit.iris <- gbm(Species ~ ., data=train.iris, n.trees=200, verbose=FALSE)
gbm.pred <- predict(gbm.fit.iris, valid.iris, n.trees=200, type="response")
gbm.pred <- as.factor(colnames(gbm.pred)[max.col(gbm.pred)]) ##!
confusionMatrix(gbm.pred, valid.iris$Species)$overall

参考までに、##!でマークされた行のコードは、predict.gbmによって返されるクラス確率の行列を最も可能性の高いクラスの係数に変換します。出力は

      Accuracy          Kappa  AccuracyLower  AccuracyUpper   AccuracyNull AccuracyPValue  McnemarPValue 
  9.111111e-01   8.666667e-01   7.877883e-01   9.752470e-01   3.333333e-01   8.467252e-16            NaN 

マルチクラスデータのgbmでキャレットを正しく機能させる方法についての提案はありますか?

PD:

sessionInfo()
R version 2.15.3 (2013-03-01)
Platform: x86_64-pc-linux-gnu (64-bit)

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8    LC_PAPER=C                 LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] splines   stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] e1071_1.6-1      class_7.3-5      gbm_2.0-8        survival_2.36-14 caret_5.15-61    reshape2_1.2.2   plyr_1.8        
 [8] lattice_0.20-13  foreach_1.4.0    cluster_1.14.3   compare_0.2-3   

loaded via a namespace (and not attached):
[1] codetools_0.2-8 compiler_2.15.3 grid_2.15.3     iterators_1.0.6 stringr_0.6.2   tools_2.15.3   
15
maruan

これは私が現在取り組んでいる問題です。

SessionInfo()の結果を投稿すると役に立ちます。

また、 https://code.google.com/p/gradientboostedmodels/ から最新のgbmを取得すると、問題が解決する場合があります。

マックス

6
topepo

更新:キャレット缶マルチクラス分類を行います。

クラスラベルが英数字形式(文字で始まる)であることを確認する必要があります。

例:データにラベル「1」、「2」、「3」がある場合は、これらを「Seg1」、「Seg2」、「Seg3」に変更します。それ以外の場合は、キャレットを失敗させます。

3
Apurva Dubey

更新:元のコードは実行され、次の出力が生成されます

+ Fold1.Rep1: shrinkage=0.1, interaction.depth=1, n.trees=150 
- Fold1.Rep1: shrinkage=0.1, interaction.depth=1, n.trees=150 
...
...
...
+ Fold5.Rep1: shrinkage=0.1, interaction.depth=3, n.trees=150 
- Fold5.Rep1: shrinkage=0.1, interaction.depth=3, n.trees=150 
Aggregating results
Selecting tuning parameters
Fitting n.trees = 50, interaction.depth = 2, shrinkage = 0.1 on full training set
> gbmFit
Stochastic Gradient Boosting 

150 samples
  4 predictor
  3 classes: 'setosa', 'versicolor', 'virginica' 

No pre-processing
Resampling: Cross-Validated (5 fold, repeated 1 times) 

Summary of sample sizes: 120, 120, 120, 120, 120 

Resampling results across tuning parameters:

  interaction.depth  n.trees  Accuracy   Kappa  Accuracy SD
  1                   50      0.9400000  0.91   0.04346135 
  1                  100      0.9400000  0.91   0.03651484 
  1                  150      0.9333333  0.90   0.03333333 
  2                   50      0.9533333  0.93   0.04472136 
  2                  100      0.9533333  0.93   0.05055250 
  2                  150      0.9466667  0.92   0.04472136 
  3                   50      0.9333333  0.90   0.03333333 
  3                  100      0.9466667  0.92   0.04472136 
  3                  150      0.9400000  0.91   0.03651484 
  Kappa SD  
  0.06519202
  0.05477226
  0.05000000
  0.06708204
  0.07582875
  0.06708204
  0.05000000
  0.06708204
  0.05477226

Tuning parameter 'shrinkage' was held constant at a value of 0.1
Accuracy was used to select the optimal model using  the
 largest value.
The final values used for the model were n.trees =
 50, interaction.depth = 2 and shrinkage = 0.1. 
> summary(gbmFit)
                      var    rel.inf
Petal.Length Petal.Length 74.1266408
Petal.Width   Petal.Width 22.0668983
Sepal.Width   Sepal.Width  3.2209288
Sepal.Length Sepal.Length  0.5855321
2
user974465