Data.tableがあります:
set.seed(1)
data <- data.table(time = c(1:3, 1:4),
groups = c(rep(c("b", "a"), c(3, 4))),
value = rnorm(7))
data
# groups time value
# 1: b 1 -0.6264538
# 2: b 2 0.1836433
# 3: b 3 -0.8356286
# 4: a 1 1.5952808
# 5: a 2 0.3295078
# 6: a 3 -0.8204684
# 7: a 4 0.4874291
「値」列の遅延バージョンを計算したいwithin各レベルの「グループ」。
結果は次のようになります
# groups time value lag.value
# 1 a 1 1.5952808 NA
# 2 a 2 0.3295078 1.5952808
# 3 a 3 -0.8204684 0.3295078
# 4 a 4 0.4874291 -0.8204684
# 5 b 1 -0.6264538 NA
# 6 b 2 0.1836433 -0.6264538
# 7 b 3 -0.8356286 0.1836433
私はlag
を直接使用しようとしました:
data$lag.value <- lag(data$value)
...これは明らかに機能しません。
私も試しました:
unlist(tapply(data$value, data$groups, lag))
a1 a2 a3 a4 b1 b2 b3
NA -0.1162932 0.4420753 2.1505440 NA 0.5894583 -0.2890288
これはほとんど私が欲しいものです。ただし、生成されたベクトルの順序はdata.tableの順序とは異なり、問題があります。
ベースR、plyr、dplyr、data.tableでこれを行う最も効率的な方法は何ですか?
data.table
内でこれを行うことができます
library(data.table)
data[, lag.value:=c(NA, value[-.N]), by=groups]
data
# time groups value lag.value
#1: 1 a 0.02779005 NA
#2: 2 a 0.88029938 0.02779005
#3: 3 a -1.69514201 0.88029938
#4: 1 b -1.27560288 NA
#5: 2 b -0.65976434 -1.27560288
#6: 3 b -1.37804943 -0.65976434
#7: 4 b 0.12041778 -1.37804943
複数の列の場合:
nm1 <- grep("^value", colnames(data), value=TRUE)
nm2 <- paste("lag", nm1, sep=".")
data[, (nm2):=lapply(.SD, function(x) c(NA, x[-.N])), by=groups, .SDcols=nm1]
data
# time groups value value1 value2 lag.value lag.value1
#1: 1 b -0.6264538 0.7383247 1.12493092 NA NA
#2: 2 b 0.1836433 0.5757814 -0.04493361 -0.6264538 0.7383247
#3: 3 b -0.8356286 -0.3053884 -0.01619026 0.1836433 0.5757814
#4: 1 a 1.5952808 1.5117812 0.94383621 NA NA
#5: 2 a 0.3295078 0.3898432 0.82122120 1.5952808 1.5117812
#6: 3 a -0.8204684 -0.6212406 0.59390132 0.3295078 0.3898432
#7: 4 a 0.4874291 -2.2146999 0.91897737 -0.8204684 -0.6212406
# lag.value2
#1: NA
#2: 1.12493092
#3: -0.04493361
#4: NA
#5: 0.94383621
#6: 0.82122120
#7: 0.59390132
data.table
バージョン> = v1.9.5
から、shift
とともにtype
をlag
またはlead
として使用できます。デフォルトでは、タイプはlag
です。
data[, (nm2) := shift(.SD), by=groups, .SDcols=nm1]
# time groups value value1 value2 lag.value lag.value1
#1: 1 b -0.6264538 0.7383247 1.12493092 NA NA
#2: 2 b 0.1836433 0.5757814 -0.04493361 -0.6264538 0.7383247
#3: 3 b -0.8356286 -0.3053884 -0.01619026 0.1836433 0.5757814
#4: 1 a 1.5952808 1.5117812 0.94383621 NA NA
#5: 2 a 0.3295078 0.3898432 0.82122120 1.5952808 1.5117812
#6: 3 a -0.8204684 -0.6212406 0.59390132 0.3295078 0.3898432
#7: 4 a 0.4874291 -2.2146999 0.91897737 -0.8204684 -0.6212406
# lag.value2
#1: NA
#2: 1.12493092
#3: -0.04493361
#4: NA
#5: 0.94383621
#6: 0.82122120
#7: 0.59390132
リバースが必要な場合は、type=lead
を使用します
nm3 <- paste("lead", nm1, sep=".")
元のデータセットを使用する
data[, (nm3) := shift(.SD, type='lead'), by = groups, .SDcols=nm1]
# time groups value value1 value2 lead.value lead.value1
#1: 1 b -0.6264538 0.7383247 1.12493092 0.1836433 0.5757814
#2: 2 b 0.1836433 0.5757814 -0.04493361 -0.8356286 -0.3053884
#3: 3 b -0.8356286 -0.3053884 -0.01619026 NA NA
#4: 1 a 1.5952808 1.5117812 0.94383621 0.3295078 0.3898432
#5: 2 a 0.3295078 0.3898432 0.82122120 -0.8204684 -0.6212406
#6: 3 a -0.8204684 -0.6212406 0.59390132 0.4874291 -2.2146999
#7: 4 a 0.4874291 -2.2146999 0.91897737 NA NA
# lead.value2
#1: -0.04493361
#2: -0.01619026
#3: NA
#4: 0.82122120
#5: 0.59390132
#6: 0.91897737
#7: NA
set.seed(1)
data <- data.table(time =c(1:3,1:4),groups = c(rep(c("b","a"),c(3,4))),
value = rnorm(7), value1=rnorm(7), value2=rnorm(7))
パッケージdplyr
の使用:
library(dplyr)
data <-
data %>%
group_by(groups) %>%
mutate(lag.value = dplyr::lag(value, n = 1, default = NA))
与える
> data
Source: local data table [7 x 4]
Groups: groups
time groups value lag.value
1 1 a 0.07614866 NA
2 2 a -0.02784712 0.07614866
3 3 a 1.88612245 -0.02784712
4 1 b 0.26526825 NA
5 2 b 1.23820506 0.26526825
6 3 b 0.09276648 1.23820506
7 4 b -0.09253594 0.09276648
@BrianDで述べたように、これは値がグループごとに既にソートされていることを暗黙的に想定しています。そうでない場合は、グループでソートするか、lag
でorder_by
引数を使用します。また、dplyrの一部のバージョンでは 既存の問題 のため、安全のために、引数と名前空間を明示的に指定する必要があります。
ベースRで、これは仕事をします:
data$lag.value <- c(NA, data$value[-nrow(data)])
data$lag.value[which(!duplicated(data$groups))] <- NA
最初の行は、時間差(+1)の観測値の文字列を追加します。遅れた観測は前のグループからのものであるため、2番目の文字列は各グループの最初のエントリを修正します。
data
の形式はdata.frame
であり、data.table
を使用しないことに注意してください。
データの順序付けに関する問題を回避したい場合は、dplyrを使用して、次のような方法で手動でこれを行うことができます。
df <- data.frame(Names = c(rep('Dan',50),rep('Dave',100)),
Dates = c(seq(1,100,by=2),seq(1,100,by=1)),
Values = rnorm(150,0,1))
df <- df %>% group_by(Names) %>% mutate(Rank=rank(Dates),
RankDown=Rank-1)
df <- df %>% left_join(select(df,Rank,ValueDown=Values,Names),by=c('RankDown'='Rank','Names')
) %>% select(-Rank,-RankDown)
head(df)
または、選択したグループ化変数、ランキング列(日付など)、および選択したラグの数を持つ関数に配置するというアイデアが好きです。これには、lazyevalとdplyrも必要です。
groupLag <- function(mydf,grouping,ranking,lag){
df <- mydf
groupL <- lapply(grouping,as.symbol)
names <- c('Rank','RankDown')
foos <- list(interp(~rank(var),var=as.name(ranking)),~Rank-lag)
df <- df %>% group_by_(.dots=groupL) %>% mutate_(.dots=setNames(foos,names))
selectedNames <- c('Rank','Values',grouping)
df2 <- df %>% select_(.dots=selectedNames)
colnames(df2) <- c('Rank','ValueDown',grouping)
df <- df %>% left_join(df2,by=c('RankDown'='Rank',grouping)) %>% select(-Rank,-RankDown)
return(df)
}
groupLag(df,c('Names'),c('Dates'),1)
重要なケースでこの問題に取り組む2つの方法について言及することで、以前の回答を補完したかったのです各グループがすべての期間のデータを持っていることが保証されていない場合。つまり、定期的な時系列がまだありますが、あちこちで欠落している可能性があります。 dplyr
ソリューションを改善する2つの方法に焦点を当てます。
使用したのと同じデータから始めます...
library(dplyr)
library(tidyr)
set.seed(1)
data_df = data.frame(time = c(1:3, 1:4),
groups = c(rep(c("b", "a"), c(3, 4))),
value = rnorm(7))
data_df
#> time groups value
#> 1 1 b -0.6264538
#> 2 2 b 0.1836433
#> 3 3 b -0.8356286
#> 4 1 a 1.5952808
#> 5 2 a 0.3295078
#> 6 3 a -0.8204684
#> 7 4 a 0.4874291
...しかし、ここでいくつかの行を削除します
data_df = data_df[-c(2, 6), ]
data_df
#> time groups value
#> 1 1 b -0.6264538
#> 3 3 b -0.8356286
#> 4 1 a 1.5952808
#> 5 2 a 0.3295078
#> 7 4 a 0.4874291
dplyr
ソリューションが機能しなくなりましたdata_df %>%
arrange(groups, time) %>%
group_by(groups) %>%
mutate(lag.value = lag(value)) %>%
ungroup()
#> # A tibble: 5 x 4
#> time groups value lag.value
#> <int> <fct> <dbl> <dbl>
#> 1 1 a 1.60 NA
#> 2 2 a 0.330 1.60
#> 3 4 a 0.487 0.330
#> 4 1 b -0.626 NA
#> 5 3 b -0.836 -0.626
ケース(group = 'a', time = '3')
の値はありませんが、実際には(group = 'a', time = '4')
の値であるtime = 2
の場合、上記の値はラグの値を示しています。
dplyr
ソリューション考え方は、欠落している(グループ、時間)組み合わせを追加することです。これはVERY可能性のある(グループ、時間)の組み合わせがたくさんあるが、値がまばらにキャプチャされる場合、メモリ効率が悪いです。
dplyr_correct_df = expand.grid(
groups = sort(unique(data_df$groups)),
time = seq(from = min(data_df$time), to = max(data_df$time))
) %>%
left_join(data_df, by = c("groups", "time")) %>%
arrange(groups, time) %>%
group_by(groups) %>%
mutate(lag.value = lag(value)) %>%
ungroup()
dplyr_correct_df
#> # A tibble: 8 x 4
#> groups time value lag.value
#> <fct> <int> <dbl> <dbl>
#> 1 a 1 1.60 NA
#> 2 a 2 0.330 1.60
#> 3 a 3 NA 0.330
#> 4 a 4 0.487 NA
#> 5 b 1 -0.626 NA
#> 6 b 2 NA -0.626
#> 7 b 3 -0.836 NA
#> 8 b 4 NA -0.836
(group = 'a', time = '4')
にNAがあることに注意してください。これは予想される動作です。 (group = 'b', time = '3')
と同じです。
Zoo::zooreg
を使用した面倒ですが正しい解決策このソリューションは、ケースの量が非常に多い場合にメモリの点でより適切に機能するはずです。なぜなら、欠落しているケースをNAで埋める代わりに、インデックスを使用するからです。
library(Zoo)
zooreg_correct_df = data_df %>%
as_tibble() %>%
# nest the data for each group
# should work for multiple groups variables
nest(-groups, .key = "Zoo_ob") %>%
mutate(Zoo_ob = lapply(Zoo_ob, function(d) {
# create zooreg objects from the individual data.frames created by nest
z = Zoo::zooreg(
data = select(d,-time),
order.by = d$time,
frequency = 1
) %>%
# calculate lags
# we also ask for the 0'th order lag so that we keep the original value
Zoo:::lag.zooreg(k = (-1):0) # note the sign convention is different
# recover df's from zooreg objects
cbind(
time = as.integer(Zoo::index(z)),
Zoo:::as.data.frame.Zoo(z)
)
})) %>%
unnest() %>%
# format values
select(groups, time, value = value.lag0, lag.value = `value.lag-1`) %>%
arrange(groups, time) %>%
# eliminate additional periods created by lag
filter(time <= max(data_df$time))
zooreg_correct_df
#> # A tibble: 8 x 4
#> groups time value lag.value
#> <fct> <int> <dbl> <dbl>
#> 1 a 1 1.60 NA
#> 2 a 2 0.330 1.60
#> 3 a 3 NA 0.330
#> 4 a 4 0.487 NA
#> 5 b 1 -0.626 NA
#> 6 b 2 NA -0.626
#> 7 b 3 -0.836 NA
#> 8 b 4 NA -0.836
最後に、両方の正しい解が実際に等しいことを確認しましょう。
all.equal(dplyr_correct_df, zooreg_correct_df)
#> [1] TRUE