次のデータを含むデータフレームがあります。
>PRICE
DATE CLOSE
1 20070103 54.700
2 20070104 54.770
3 20070105 55.120
4 20070108 54.870
5 20070109 54.860
6 20070110 54.270
7 20070111 54.770
8 20070112 55.360
9 20070115 55.760
...
ご覧のとおり、DATE列は日付(yyyyMMdd)を表し、CLOSE列は価格を表します。
PerformanceAnalyticsパッケージからCalmarRatioを計算する必要があります。
私はRが初めてなので、すべてを理解することはできませんが、グーグルで調べたことから、その関数のRパラメータは時系列のようなオブジェクトである必要があることがわかります。
期間内のすべての日付のデータがない場合(指定したもののみ)、配列を時系列オブジェクトに変換する方法はありますか?
DATE
列は日付を表しますが、実際には文字、因子、整数、数値ベクトルのいずれかです。
最初に、DATE
列をDate
オブジェクトに変換する必要があります。次に、CLOSE
data.frameのDATE
列とPRICE
列からxtsオブジェクトを作成できます。最後に、xtsオブジェクトを使用して、収益とカルマー比を計算できます。
PRICE <- structure(list(
DATE = c(20070103L, 20070104L, 20070105L, 20070108L, 20070109L,
20070110L, 20070111L, 20070112L, 20070115L),
CLOSE = c(54.7, 54.77, 55.12, 54.87, 54.86, 54.27, 54.77, 55.36, 55.76)),
.Names = c("DATE", "CLOSE"), class = "data.frame",
row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9"))
library(PerformanceAnalytics) # loads/attaches xts
# Convert DATE to Date class
PRICE$DATE <- as.Date(as.character(PRICE$DATE),format="%Y%m%d")
# create xts object
x <- xts(PRICE$CLOSE,PRICE$DATE)
CalmarRatio(Return.calculate(x))
# [,1]
# Calmar Ratio 52.82026
ほとんどの人は、時系列クラスでの作業が大きな苦痛だと感じています。パッケージZooのZooクラスの使用を検討する必要があります。重複についてのみ、欠落した時間については文句を言いません。 PerformanceAnalytics関数は、ほぼ確実に 'Zoo'またはその子孫クラス 'xts'を期待しています。
pricez <- read.Zoo(text=" DATE CLOSE
1 20070103 54.700
2 20070104 54.770
3 20070105 55.120
4 20070108 54.870
5 20070109 54.860
6 20070110 54.270
7 20070111 54.770
8 20070112 55.360
9 20070115 55.760
")
index(pricez) <- as.Date(as.character(index(pricez)), format="%Y%m%d")
pricez
2007-01-03 2007-01-04 2007-01-05 2007-01-08 2007-01-09 2007-01-10 2007-01-11 2007-01-12 2007-01-15
54.70 54.77 55.12 54.87 54.86 54.27 54.77 55.36 55.76
代替ソリューションは、tidyquant
パッケージを使用することです。これにより、時系列機能を含む金融パッケージの機能をデータフレームで使用できます。次の例は、複数の資産のカルマー比を取得する方法を示しています。 tidyquant vignettes は、パッケージの使用方法の詳細に進みます。
library(tidyquant)
# Get prices
price_tbl <- c("FB", "AMZN", "NFLX", "GOOG") %>%
tq_get(get = "stock.prices",
from = "2010-01-01",
to = "2016-12-31")
price_tbl
#> # A tibble: 6,449 × 8
#> symbol date open high low close volume adjusted
#> <chr> <date> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 FB 2012-05-18 42.05 45.00 38.00 38.23 573576400 38.23
#> 2 FB 2012-05-21 36.53 36.66 33.00 34.03 168192700 34.03
#> 3 FB 2012-05-22 32.61 33.59 30.94 31.00 101786600 31.00
#> 4 FB 2012-05-23 31.37 32.50 31.36 32.00 73600000 32.00
#> 5 FB 2012-05-24 32.95 33.21 31.77 33.03 50237200 33.03
#> 6 FB 2012-05-25 32.90 32.95 31.11 31.91 37149800 31.91
#> 7 FB 2012-05-29 31.48 31.69 28.65 28.84 78063400 28.84
#> 8 FB 2012-05-30 28.70 29.55 27.86 28.19 57267900 28.19
#> 9 FB 2012-05-31 28.55 29.67 26.83 29.60 111639200 29.60
#> 10 FB 2012-06-01 28.89 29.15 27.39 27.72 41855500 27.72
#> # ... with 6,439 more rows
# Convert to period returns
return_tbl <- price_tbl %>%
group_by(symbol) %>%
tq_transmute(ohlc_fun = Ad,
mutate_fun = periodReturn,
period = "daily")
return_tbl
#> Source: local data frame [6,449 x 3]
#> Groups: symbol [4]
#>
#> symbol date daily.returns
#> <chr> <date> <dbl>
#> 1 FB 2012-05-18 0.00000000
#> 2 FB 2012-05-21 -0.10986139
#> 3 FB 2012-05-22 -0.08903906
#> 4 FB 2012-05-23 0.03225806
#> 5 FB 2012-05-24 0.03218747
#> 6 FB 2012-05-25 -0.03390854
#> 7 FB 2012-05-29 -0.09620809
#> 8 FB 2012-05-30 -0.02253811
#> 9 FB 2012-05-31 0.05001770
#> 10 FB 2012-06-01 -0.06351355
#> # ... with 6,439 more rows
# Calculate performance
return_tbl %>%
tq_performance(Ra = daily.returns,
performance_fun = CalmarRatio)
#> Source: local data frame [4 x 2]
#> Groups: symbol [4]
#>
#> symbol CalmarRatio
#> <chr> <dbl>
#> 1 FB 0.50283172
#> 2 AMZN 0.91504597
#> 3 NFLX 0.14444744
#> 4 GOOG 0.05068483
上記の回答のように、データフレーム(または任意の時系列)をxtsまたはZooオブジェクトに変換するか、他の任意の時系列(ts
オブジェクトなど)に変換するかどうか tsbox パッケージは強制を容易にします:
PRICE <- structure(list(
DATE = c(20070103L, 20070104L, 20070105L, 20070108L, 20070109L,
20070110L, 20070111L, 20070112L, 20070115L),
CLOSE = c(54.7, 54.77, 55.12, 54.87, 54.86, 54.27, 54.77, 55.36, 55.76)),
.Names = c("DATE", "CLOSE"), class = "data.frame",
row.names = c("1", "2", "3", "4", "5", "6", "7", "8", "9"))
library(tsbox)
ts_xts(PRICE)
#> [time]: 'DATE' [value]: 'CLOSE'
#> Loading required namespace: xts
#> Registered S3 method overwritten by 'xts':
#> method from
#> as.Zoo.xts Zoo
#> CLOSE
#> 2007-01-03 54.70
#> 2007-01-04 54.77
#> 2007-01-05 55.12
#> 2007-01-08 54.87
#> 2007-01-09 54.86
#> 2007-01-10 54.27
#> 2007-01-11 54.77
#> 2007-01-12 55.36
#> 2007-01-15 55.76
ts_ts(PRICE)
#> [time]: 'DATE' [value]: 'CLOSE'
#> Time Series:
#> Start = 2007.00547581401
#> End = 2007.0383306981
#> Frequency = 365.2425
#> [1] 54.70 54.77 55.12 NA NA 54.87 54.86 54.27 54.77 55.36 NA
#> [12] NA 55.76