web-dev-qa-db-ja.com

dplyrは小計で要約します

Excelのピボットテーブルの優れた点の1つは、小計が自動的に提供されることです。まず、dplyr内でこれを実現できるものが既に作成されているかどうかを知りたいです。そうでない場合、それを達成する最も簡単な方法は何ですか?

以下の例では、シリンダーとキャブレターの数による平均変位を示しています。シリンダーの各グループ(4、6、8)について、グループの平均変位(または総変位、またはその他の要約統計)を表示します。

library(dplyr)
mtcars %>% group_by(cyl,carb) %>% summarize(mean(disp))

  cyl carb mean(disp)
1   4    1      91.38
2   4    2     116.60
3   6    1     241.50
4   6    4     163.80
5   6    6     145.00
6   8    2     345.50
7   8    3     275.80
8   8    4     405.50
9   8    8     301.00
23
Kyle Ward

data.table非常に扱いにくいですが、これは1つの方法です。

library(data.table)
DT <- data.table(mtcars)
rbind(
  DT[,.(mean(disp)),          by=.(cyl,carb)],
  DT[,.(mean(disp), carb=NA), by=.(cyl) ],
  DT[,.(mean(disp), cyl=NA),  by=.(carb)]
)[order(cyl,carb)]

これは与える

    cyl carb       V1
 1:   4    1  91.3800
 2:   4    2 116.6000
 3:   4   NA 105.1364
 4:   6    1 241.5000
 5:   6    4 163.8000
 6:   6    6 145.0000
 7:   6   NA 183.3143
 8:   8    2 345.5000
 9:   8    3 275.8000
10:   8    4 405.5000
11:   8    8 301.0000
12:   8   NA 353.1000
13:  NA    1 134.2714
14:  NA    2 208.1600
15:  NA    3 275.8000
16:  NA    4 308.8200
17:  NA    6 145.0000
18:  NA    8 301.0000

R tableのような結果が表示されますが、そのための関数はわかりません。


dplyr @akrunがこの類似のコードを見つけました

bind_rows(
  mtcars %>% 
    group_by(cyl, carb) %>% 
    summarise(Mean= mean(disp)), 
  mtcars %>% 
    group_by(cyl) %>% 
    summarise(carb=NA, Mean=mean(disp)), 
  mtcars %>% 
    group_by(carb) %>% 
    summarise(cyl=NA, Mean=mean(disp))
) %>% arrange(cyl, carb)

繰り返し操作を関数にラップすることができます

library(lazyeval)
f1 <- function(df, grp, Var, func){
  FUN <- match.fun(func)
   df %>% 
     group_by_(.dots=grp) %>%
     summarise_(interp(~FUN(v), v=as.name(Var)))
  }

 m1 <- f1(mtcars, c('carb', 'cyl'), 'disp', 'mean')
 m2 <- f1(mtcars, 'carb', 'disp', 'mean')
 m3 <- f1(mtcars, 'cyl', 'disp', 'mean')

 bind_rows(list(m1, m2, m3)) %>%
              arrange(cyl, carb) %>%
              rename(Mean=`FUN(disp)`)
   carb cyl     Mean
1     1   4  91.3800
2     2   4 116.6000
3    NA   4 105.1364
4     1   6 241.5000
5     4   6 163.8000
6     6   6 145.0000
7    NA   6 183.3143
8     2   8 345.5000
9     3   8 275.8000
10    4   8 405.5000
11    8   8 301.0000
12   NA   8 353.1000
13    1  NA 134.2714
14    2  NA 208.1600
15    3  NA 275.8000
16    4  NA 308.8200
17    6  NA 145.0000
18    8  NA 301.0000

どちらのオプションも、data.tableのrbindlistfillを使用すると、少し見栄えがよくなります。

rbindlist(list(
  mtcars %>% group_by(cyl) %>% summarise(mean(disp)),
  mtcars %>% group_by(carb) %>% summarise(mean(disp)),
  mtcars %>% group_by(cyl,carb) %>% summarise(mean(disp))
),fill=TRUE) %>% arrange(cyl,carb)

rbindlist(list(
  DT[,mean(disp),by=.(cyl,carb)],
  DT[,mean(disp),by=.(cyl)],
  DT[,mean(disp),by=.(carb)]
),fill=TRUE)[order(cyl,carb)]
9
Frank

tableaddmarginsのようなもの(実際にはdata.frame

library(dplyr)
library(reshape2)
out <- bind_cols(
    mtcars %>% group_by(cyl, carb) %>%
      summarise(mu = mean(disp)) %>%
      dcast(cyl ~ carb),
    (mtcars %>% group_by(cyl) %>% summarise(Total=mean(disp)))[,2]
)

margin <- t((mtcars %>% group_by(carb) %>% summarise(Total=mean(disp)))[,2])
rbind(out, c(NA, margin, mean(mtcars$disp))) %>%
  `rownames<-`(c(paste("cyl", c(4,6,8)), "Total"))  # add some row names
#      cyl        1      2     3      4   6   8    Total
# cyl 4   4  91.3800 116.60    NA     NA  NA  NA 105.1364
# cyl 6   6 241.5000     NA    NA 163.80 145  NA 183.3143
# cyl 8   8       NA 345.50 275.8 405.50  NA 301 353.1000
# Total  NA 134.2714 208.16 275.8 308.82 145 301 230.7219

下の行は列ごとのマージン、1:8という名前の列は炭水化物、合計は行ごとのマージンです。

6
pickle rick

2つのグループの結果を単純に結合することによっても可能です。

cyl_carb <- mtcars %>% group_by(cyl,carb) %>% summarize(mean(disp))
cyl <- mtcars %>% group_by(cyl) %>% summarize(mean(disp))
joined <- full_join(cyl_carb, cyl)
result <- arrange(joined, cyl)
result

与える:

Source: local data frame [12 x 3]
Groups: cyl [3]

     cyl  carb mean(disp)
   (dbl) (dbl)      (dbl)
1      4     1    91.3800
2      4     2   116.6000
3      4    NA   105.1364
4      6     1   241.5000
5      6     4   163.8000
6      6     6   145.0000
7      6    NA   183.3143
8      8     2   345.5000
9      8     3   275.8000
10     8     4   405.5000
11     8     8   301.0000
12     8    NA   353.1000

または追加の列を使用して:

cyl_carb <- mtcars %>% group_by(cyl,carb) %>% summarize(mean(disp))
cyl <- mtcars %>% group_by(cyl) %>% summarize(mean.cyl = mean(disp))
joined <- full_join(cyl_carb, cyl)
joined

与える:

Source: local data frame [9 x 4]
Groups: cyl [?]

    cyl  carb mean(disp) mean.cyl
  (dbl) (dbl)      (dbl)    (dbl)
1     4     1      91.38 105.1364
2     4     2     116.60 105.1364
3     6     1     241.50 183.3143
4     6     4     163.80 183.3143
5     6     6     145.00 183.3143
6     8     2     345.50 353.1000
7     8     3     275.80 353.1000
8     8     4     405.50 353.1000
9     8     8     301.00 353.1000
4
Andi Erni

これはあまりエレガントな解決策ではないかもしれませんが、とにかくそれが役に立てば幸いです:

p <-mtcars %>% group_by(cyl,carb) 
p$cyl <- as.factor(p$cyl)
average_disp <- sapply(1:length(levels(p$cyl)), function(x)mean(subset(p,p$cyl==levels(p$cyl)[x])$disp))
df <- data.frame(levels(p$cyl),average_disp)
colnames(df)[1]<-"cyl"

#> df
#  cyl average_disp
#1   4     105.1364
#2   6     183.3143
#3   8     353.1000

(編集:pの定義を少し変更した後、これにより@Frankのソリューションと@akrunのソリューションと同じ結果が得られます)

2
RHertel

以下は、data_frame内にマージンを作成する単純な1行のコードです。

library(plyr)
library(dplyr)

# Margins without labels
mtcars %>% 
  group_by(cyl,carb) %>% 
  summarize(Mean_Disp=mean(disp)) %>% 
  do(plyr::rbind.fill(., data_frame(cyl=first(.$cyl), Mean_Disp=sum(.$Mean_Disp, na.rm=T))))

出力:

Source: local data frame [12 x 3]
Groups: cyl [3]

     cyl  carb Mean_Disp
   <dbl> <dbl>     <dbl>
1      4     1     91.38
2      4     2    116.60
3      4    NA    207.98
4      6     1    241.50
5      6     4    163.80
6      6     6    145.00
7      6    NA    550.30
8      8     2    345.50
9      8     3    275.80
10     8     4    405.50
11     8     8    301.00
12     8    NA   1327.80

次のような要約統計のラベルを追加することもできます。

mtcars %>% 
  group_by(cyl,carb) %>% 
  summarize(Mean_Disp=mean(disp)) %>% 
  do(plyr::rbind.fill(., data_frame(cyl=first(.$cyl), carb=c("Total", "Mean"), Mean_Disp=c(sum(.$Mean_Disp, na.rm=T), mean(.$Mean_Disp, na.rm=T)))))

出力:

Source: local data frame [15 x 3]
Groups: cyl [3]

     cyl  carb Mean_Disp
   <dbl> <chr>     <dbl>
1      4     1     91.38
2      4     2    116.60
3      4 Total    207.98
4      4  Mean    103.99
5      6     1    241.50
6      6     4    163.80
7      6     6    145.00
8      6 Total    550.30
9      6  Mean    183.43
10     8     2    345.50
11     8     3    275.80
12     8     4    405.50
13     8     8    301.00
14     8 Total   1327.80
15     8  Mean    331.95
2
dabsingh

data.table上記のバージョンv1.11

library(data.table)

cubed <- cube(
  as.data.table(mtcars),
  .(`mean(disp)` = mean(disp)),
  by = c("cyl", "carb")
)
#>     cyl carb mean(disp)
#>  1:   6    4   163.8000
#>  2:   4    1    91.3800
#>  3:   6    1   241.5000
#>  4:   8    2   345.5000
#>  5:   8    4   405.5000
#>  6:   4    2   116.6000
#>  7:   8    3   275.8000
#>  8:   6    6   145.0000
#>  9:   8    8   301.0000
#> 10:   6   NA   183.3143
#> 11:   4   NA   105.1364
#> 12:   8   NA   353.1000
#> 13:  NA    4   308.8200
#> 14:  NA    1   134.2714
#> 15:  NA    2   208.1600
#> 16:  NA    3   275.8000
#> 17:  NA    6   145.0000
#> 18:  NA    8   301.0000
#> 19:  NA   NA   230.7219

dcast(
  cubed, 
  cyl ~ carb,  
  value.var = "mean(disp)"
)
#>    cyl       NA        1      2     3      4   6   8
#> 1:  NA 230.7219 134.2714 208.16 275.8 308.82 145 301
#> 2:   4 105.1364  91.3800 116.60    NA     NA  NA  NA
#> 3:   6 183.3143 241.5000     NA    NA 163.80 145  NA
#> 4:   8 353.1000       NA 345.50 275.8 405.50  NA 301

reprexパッケージ (v0.3.0)によって2020-02-20に作成されました

ソース: https://jozef.io/r912-datatable-grouping-sets/

1
Aurèle

このラッパーをddplyの周りで使用できます。これにより、可能なマージンごとにddplyが適用され、通常の出力でrbinds結果が適用されます。

すべてのグループ化要素を取り除きます:

mtcars %>% ddplym(.variables = .(cyl, carb), .fun = summarise, mean(disp))

carbのみを周辺化するには:

mtcars %>% ddplym(
  .variables = .(carb),
  .fun = function(data) data %>% group_by(cyl) %>% summarise(mean(disp)))

ラッパー:

require(plyr)
require(dplyr)

ddplym <- function(.data, .variables, .fun, ..., .margin = TRUE, .margin_name = '(all)') {
  if (.margin) {
    df <- .ddplym(.data, .variables, .fun, ..., .margin_name = .margin_name)
  } else {
    df <- ddply(.data, .variables, .fun, ...)
    if (.variables %>% length == 0) {
      df$.id <- NULL
    }
  }

  return(df)
}

.ddplym <- function(.data,
                    .variables,
                    .fun,
                    ...,
                    .margin_name = '(all)'
) {

  .variables <- as.quoted(.variables)

  n <- length(.variables)

  var_combn_idx <- lapply(0:n, function(x) {
    combn(1:n, n - x) %>% alply(2, c)
  }) %>%
    unlist(recursive = FALSE, use.names = FALSE)

  data_list <- lapply(var_combn_idx, function(x) {
    data <- ddply(.data, .variables[x], .fun, ...)

    # drop '.id' column created when no variables to split by specified
    if (!length(.variables[x]))
      data <- data[, -1, drop = FALSE]

    return(data)
  })

  # workaround for NULL .variables
  if (unlist(.variables) %>% is.null && names(.variables) %>% is.null) {
    data_list <- data_list[1]
  } else if (unlist(.variables) %>% is.null) {
    data_list <- data_list[2]
  }

  if (length(data_list) > 1) {
    data_list <- lapply(data_list, function(data)
      rbind_pre(
        data = data,
        colnames = colnames(data_list[[1]]),
        fill = .margin_name
      )) 
  }

  Reduce(rbind, data_list)
}

rbind_pre <- function(data, colnames, fill = NA) {
  colnames_fill <- setdiff(colnames, colnames(data))
  data_fill <- matrix(fill,
                      nrow = nrow(data),
                      ncol = length(colnames_fill)) %>%
    as.data.frame %>% setNames(colnames_fill)
  cbind(data, data_fill)[, colnames]
}
0
mjktfw

これに対する私のアプローチを共有します(それがまったく役立つ場合)。このアプローチにより、カスタム小計と合計を非常に簡単に追加できます。

data = data.frame( thing1=sprintf("group %i",trunc(runif(200,0,5))),
                   thing2=sprintf("type %i",trunc(runif(200,0,5))),
                   value=rnorm(200,0,1) )
data %>%
  group_by( thing1, thing2 ) %>% 
  summarise( sum=sum(value),
             count=n() ) %>%
  ungroup() %>%
  bind_rows(.,
            identity(.) %>%
              group_by(thing1) %>%
              summarise( aggregation="sub total",
                         sum=sum(sum),
                         count=sum(count) ) %>%
              ungroup(),
            identity(.) %>%
              summarise( aggregation="total",
                         sum=sum(sum),
                         count=sum(count) ) %>%
              ungroup() ) %>%
  arrange( thing1, thing2, aggregation ) %>%
  select( aggregation, everything() )
0
James