データフレームseed
のy
列がstring
のx
列の部分一致である場合、2つのデータフレームを結合したいと思います。この例は、次のことを示しています。
# What I have
x <- data.frame(idX=1:3, string=c("Motorcycle", "TractorTrailer", "Sailboat"))
y <- data_frame(idY=letters[1:3], seed=c("ractor", "otorcy", "irplan"))
x
idX string
1 1 Motorcycle
2 2 TractorTrailer
3 3 Sailboat
y
Source: local data frame [3 x 2]
idY seed
(chr) (chr)
1 a ractor
2 b otorcy
3 c irplan
# What I want
want <- data.frame(idX=c(1,2), idY=c("b", "a"), string=c("Motorcycle", "TractorTrailer"), seed=c("otorcy", "ractor"))
want
idX idY string seed
1 1 b Motorcycle otorcy
2 2 a TractorTrailer ractor
つまり、
inner_join(x, y, by=stringr::str_detect(x$string, y$seed))
fuzzyjoin
ライブラリには2つの関数regex_inner_join
およびfuzzy_inner_join
を使用すると、部分的な文字列を照合できます。
x <- data.frame(idX=1:3, string=c("Motorcycle", "TractorTrailer", "Sailboat"))
y <- data.frame(idY=letters[1:3], seed=c("ractor", "otorcy", "irplan"))
x$string = as.character(x$string)
y$seed = as.character(y$seed)
library(fuzzyjoin)
x %>% regex_inner_join(y, by = c(string = "seed"))
idX string idY seed
1 1 Motorcycle b otorcy
2 2 TractorTrailer a ractor
library(stringr)
x %>% fuzzy_inner_join(y, by = c("string" = "seed"), match_fun = str_detect)
idX string idY seed
1 1 Motorcycle b otorcy
2 2 TractorTrailer a ractor
また、この関数でbase-rを使用することもできます(ここでのこの回答からわずかに変更: https://stackoverflow.com/a/34723496/304845 、それはdplyrを使用して列をバインドし、cbind
を使用しますdplyrを使用したくない場合):
partial_join <- function(x, y, by_x, pattern_y)
idx_x <- sapply(y[[pattern_y]], grep, x[[by_x]])
idx_y <- sapply(seq_along(idx_x), function(i) rep(i, length(idx_x[[i]])))
df <- dplyr::bind_cols(x[unlist(idx_x), , drop = F],
y[unlist(idx_y), , drop = F])
return(df)
}
あなたの例で
x <- data.frame(idX=1:3, string=c("Motorcycle", "TractorTrailer", "Sailboat"))
y <- data_frame(idY=letters[1:3], seed=c("ractor", "otorcy", "irplan"))
df_merged <- partial_join(x, y, by_x = "string", pattern_y = "seed")
df_merged
# # A tibble: 2 × 4
# idX string idY seed
# <int> <chr> <chr> <chr>
# 1 1 Motorcycle b otorcy
# 2 2 TractorTrailer a ractor
library(dplyr)
x <- data_frame(idX=1:3, string=c("Motorcycle", "TractorTrailer", "Sailboat"))
y <- data_frame(idY=letters[1:3], seed=c("ractor", "otorcy", "irplan"))
partial_join <- function(x, y, by_x, pattern_y) {
idx_x <- sapply(y[[pattern_y]], grep, x[[by_x]])
idx_y <- sapply(seq_along(idx_x), function(i) rep(i, length(idx_x[[i]])))
df <- dplyr::bind_cols(x[unlist(idx_x), , drop = F],
y[unlist(idx_y), , drop = F])
return(df)
}
partial_join(x, y, by_x = "string", pattern_y = "seed")
#> # A tibble: 2 × 4
#> idX string idY seed
#> <int> <chr> <chr> <chr>
#> 1 1 Motorcycle b otorcy
#> 2 2 TractorTrailer a ractor
joran <- function(x, y, by_x, pattern_y) {
library(dplyr)
my_db <- src_sqlite(path = tempfile(), create= TRUE)
x_tbl <- copy_to(dest = my_db, df = x)
y_tbl <- copy_to(dest = my_db, df = y)
result <- tbl(my_db,
sql(sprintf("select * from x, y where x.%s like '%%' || y.%s || '%%'", by_x, pattern_y)))
collect(result, n = Inf)
}
joran(x, y, "string", "seed")
#> # A tibble: 2 × 4
#> idX string idY seed
#> <int> <chr> <chr> <chr>
#> 1 1 Motorcycle b otorcy
#> 2 2 TractorTrailer a ractor
stephen <- function(x, y, by_x, pattern_y) {
library(dplyr)
d <- full_join(mutate(x, i=1),
mutate(y, i=1), by = "i")
# quoting issue here, defaulting to base-r
d$take <- stringr::str_detect(d[[by_x]], d[[pattern_y]])
d %>%
filter(take == T) %>%
select(-i, -take)
}
stephen(x, y, "string", "seed")
#> # A tibble: 2 × 4
#> idX string idY seed
#> <int> <chr> <chr> <chr>
#> 1 1 Motorcycle b otorcy
#> 2 2 TractorTrailer a ractor
feng <- function(x, y, by_x, pattern_y) {
library(fuzzyjoin)
by_string <- pattern_y
names(by_string) <- by_x
regex_inner_join(x, y, by = by_string)
}
feng(x, y, "string", "seed")
#> # A tibble: 2 × 4
#> idX string idY seed
#> <int> <chr> <chr> <chr>
#> 1 1 Motorcycle b otorcy
#> 2 2 TractorTrailer a ractor
library(microbenchmark)
res <- microbenchmark(
joran(x, y, "string", "seed"),
stephen(x, y, "string", "seed"),
feng(x, y, "string", "seed"),
partial_join(x, y, "string", "seed")
)
res
#> Unit: microseconds
#> expr min lq mean
#> joran(x, y, "string", "seed") 18953.008 20099.0540 21641.6646
#> stephen(x, y, "string", "seed") 1320.161 1456.9415 1704.9218
#> feng(x, y, "string", "seed") 5187.366 5625.8825 6926.2336
#> partial_join(x, y, "string", "seed") 190.264 222.0055 257.7906
#> median uq max neval cld
#> 20675.5855 21827.764 70707.324 100 c
#> 1579.8925 1670.719 9676.176 100 a
#> 5842.8150 6065.530 107961.805 100 b
#> 242.0735 283.870 523.649 100 a
set.seed(123123)
x_large <- x %>% sample_n(1000, replace = T)
y_large <- y %>% sample_n(1000, replace = T)
res_large <- microbenchmark(
joran(x_large, y_large, "string", "seed"),
# stephen(x_large, y_large, "string", "seed"),
feng(x_large, y_large, "string", "seed"),
partial_join(x_large, y_large, "string", "seed")
)
res_large
#> Unit: milliseconds
#> expr min lq mean median uq max neval cld
#> joran(x_large, y_large, "string", "seed") 321.03631 324.49262 334.2760 329.13991 335.30185 368.1153 10 c
#> feng(x_large, y_large, "string", "seed") 88.00369 89.85744 103.8686 93.84477 97.69121 200.0473 10 a
#> partial_join(x_large, y_large, "string", "seed") 286.01533 286.78024 290.6295 288.89405 291.79887 303.4524 10 b
これがより大きなデータに対してどのように機能するかはわかりませんが、それ(またはその変形)は試してみる価値があります。
library(dplyr)
x <- data.frame(idX=1:3, string=c("Motorcycle", "TractorTrailer", "Sailboat"))
y <- data_frame(idY=letters[1:3], seed=c("ractor", "otorcy", "irplan"))
my_db <- src_sqlite(path = tempfile(),create= TRUE)
x_tbl <- copy_to(dest = my_db,df = x)
y_tbl <- copy_to(dest = my_db,df = y)
result <- tbl(my_db,sql("select * from x,y where x.string like '%' || y.seed || '%'"))
> collect(result)
Source: local data frame [2 x 4]
idX string idY seed
(int) (chr) (chr) (chr)
1 1 Motorcycle b otorcy
2 2 TractorTrailer a ractor
このパフォーマンスがDB間でどのように異なるかについても説明できません。この種のクエリでは、postgresまたはmysqlの方が良い場合と悪い場合があります。
これは機能しますが、巨大なデータセットでは信じられないほど遅くなります。
x <- data.frame(idX=1:3, string=c("Motorcycle", "TractorTrailer", "Sailboat"))
y <- data_frame(idY=letters[1:3], seed=c("ractor", "otorcy", "irplan"))
library(dplyr)
full_join(mutate(x, i=1),
mutate(y, i=1)) %>%
select(-i) %>%
filter(str_detect(string, seed))