予測値と実際の値を並べて、予測値と残差のプロットを並べて表示するファセットプロットを作成しています。 shiny
を使用して、さまざまなトレーニングパラメーターを使用したモデリング作業の結果を調査します。 85%のデータでモデルをトレーニングし、残りの15%でテストし、これを5回繰り返し、毎回実際の値/予測値を収集します。残差を計算すると、私のdata.frame
は次のようになります。
head(results)
act pred resid
2 52.81000 52.86750 -0.05750133
3 44.46000 42.76825 1.69175252
4 54.58667 49.00482 5.58184181
5 36.23333 35.52386 0.70947731
6 53.22667 48.79429 4.43237981
7 41.72333 41.57504 0.14829173
私が欲しいもの:
pred
対act
およびpred
対resid
の並列プロットpred
対act
のx/y範囲/制限は、理想的にはmin(min(results$act), min(results$pred))
からmax(max(results$act), max(results$pred))
まで同じですpred
vs. resid
notのx/y範囲/制限は、実際のvs 。予測プロット。予測値のみのx
と残差範囲のみのy
のプロットは問題ありません。両方のプロットを並べて表示するために、データを融解します。
library(reshape2)
plot <- melt(results, id.vars = "pred")
今プロット:
library(ggplot2)
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")
print(p)
それは私が望むものにかなり近いです:
私が望むのは、実際と同じであると予測されるxとyの範囲ですが、それをどのように指定するのかわからないので、Ido n't範囲が完全に異なるため、予測プロットと残差プロットに対して行う必要があります。
scale_x_continous
とscale_y_continuous
の両方に次のようなものを追加してみました。
min_xy <- min(min(plot$pred), min(plot$value))
max_xy <- max(max(plot$pred), max(plot$value))
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")
p <- p + scale_x_continuous(limits = c(min_xy, max_xy))
p <- p + scale_y_continuous(limits = c(min_xy, max_xy))
print(p)
しかし、それは残差値のmin()
を選択します。
私が持っていた最後のアイデアは、最小のact
およびpred
変数の値を保存する前に融解してから追加することですそれらをどのファセットに表示するかを決定するために、溶けたデータフレームに:
head(results)
act pred resid
2 52.81000 52.86750 -0.05750133
3 44.46000 42.76825 1.69175252
4 54.58667 49.00482 5.58184181
5 36.23333 35.52386 0.70947731
min_xy <- min(min(results$act), min(results$pred))
max_xy <- max(max(results$act), max(results$pred))
plot <- melt(results, id.vars = "pred")
plot <- rbind(plot, data.frame(pred = c(min_xy, max_xy),
variable = c("act", "act"), value = c(max_xy, min_xy)))
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free")
print(p)
ポイントが表示されることを除いて、それは私が望むことをします:
このようなことをするための提案はありますか?
このアイデア を追加してgeom_blank()
を追加しましたが、aes()
ビットを指定して適切に機能させる方法、またはgeom_point()
に相当するものがわかりませんaes(y = max(..count..))
のヒストグラムの使用です。
再生するデータは次のとおりです(融解前の実際の値、予測値、および残差値):
> dput(results)
structure(list(act = c(52.81, 44.46, 54.5866666666667, 36.2333333333333,
53.2266666666667, 41.7233333333333, 35.2966666666667, 30.6833333333333,
39.25, 35.8866666666667, 25.1, 29.0466666666667, 23.2766666666667,
56.3866666666667, 42.92, 41.57, 27.92, 23.16, 38.0166666666667,
61.8966666666667, 37.41, 41.6333333333333, 35.9466666666667,
48.9933333333333, 30.5666666666667, 32.08, 40.3633333333333,
53.2266666666667, 64.6066666666667, 38.5366666666667, 41.7233333333333,
25.78, 33.4066666666667, 27.8033333333333, 39.3266666666667,
48.9933333333333, 25.2433333333333, 32.67, 55.17, 42.92, 54.5866666666667,
23.16, 64.6066666666667, 40.7966666666667, 39.0166666666667,
41.6333333333333, 35.8866666666667, 25.1, 23.2766666666667, 44.46,
34.2166666666667, 40.8033333333333, 24.5766666666667, 35.73,
61.8966666666667, 62.1833333333333, 74.6466666666667, 39.4366666666667,
36.6, 27.1333333333333), pred = c(52.8675013282404, 42.7682474758679,
49.0048248585123, 35.5238560262515, 48.7942868566949, 41.5750416040131,
33.9548164913007, 29.9787449128663, 37.6443975781139, 36.7196211666685,
27.6043278172077, 27.0615724310721, 31.2073056885252, 55.0886903524179,
43.0895814712768, 43.0895814712768, 32.3549865881578, 26.2428426737583,
36.6926037128343, 56.7987490221996, 45.0370788180147, 41.8231642271826,
38.3297859332601, 49.5343916620086, 30.8535641206809, 29.0117492750411,
36.9767968381391, 49.0826677983065, 54.4678549541069, 35.5059204731218,
41.5333417555995, 27.6069075391361, 31.2404889715121, 27.8920960978598,
37.8505531149324, 49.2616631533957, 30.366837650159, 31.1623492639066,
55.0456078770405, 42.772538591063, 49.2419293590535, 26.1963523976241,
54.4080781796616, 44.9796700541254, 34.6996927469131, 41.6227713664027,
36.8449646519306, 27.5318686661673, 31.6641793552795, 42.8198894266632,
40.5769177148146, 40.5769177148146, 29.3807781312816, 36.8579132935989,
55.5617033901752, 55.8097119335638, 55.1041728261666, 43.6094641699075,
37.0674887276681, 27.3876960746536), resid = c(-0.0575013282403773,
1.69175252413213, 5.58184180815435, 0.709477307081826, 4.43237980997177,
0.148291729320228, 1.34185017536599, 0.704588420467079, 1.60560242188613,
-0.832954500001826, -2.50432781720766, 1.98509423559461, -7.93063902185855,
1.29797631424874, -0.169581471276786, -1.51958147127679, -4.43498658815778,
-3.08284267375831, 1.32406295383237, 5.09791764446704, -7.62707881801468,
-0.189830893849219, -2.38311926659339, -0.541058328675241, -0.286897454014273,
3.06825072495888, 3.38653649519422, 4.14399886836018, 10.1388117125598,
3.03074619354486, 0.189991577733821, -1.82690753913609, 2.16617769515461,
-0.088762764526507, 1.47611355173427, -0.268329820062384, -5.12350431682565,
1.5076507360934, 0.124392122959534, 0.147461408936991, 5.34473730761318,
-3.03635239762411, 10.1985884870051, -4.18300338745873, 4.31697391975358,
0.0105619669306023, -0.958297985263961, -2.43186866616734, -8.38751268861282,
1.64011057333683, -6.36025104814794, 0.226415618518729, -4.80411146461488,
-1.1279132935989, 6.33496327649151, 6.37362139976954, 19.5424938405001,
-4.17279750324084, -0.467488727668119, -0.254362741320246)), .Names = c("act",
"pred", "resid"), row.names = c(2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
24L, 25L, 26L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L, 37L,
38L, 39L, 41L, 42L, 43L, 44L, 45L, 46L, 47L, 48L, 49L, 50L, 51L,
52L, 54L, 55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L
), class = "data.frame")
ダミーのgeom_blank
レイヤーを使用したコードを次に示します。
range_act <- range(range(results$act), range(results$pred))
d <- reshape2::melt(results, id.vars = "pred")
dummy <- data.frame(pred = range_act, value = range_act,
variable = "act", stringsAsFactors=FALSE)
ggplot(d, aes(x = pred, y = value)) +
facet_wrap(~variable, scales = "free") +
geom_point(size = 2.5) +
geom_blank(data=dummy) +
theme_bw()
私はあなたが何を望んでいるか理解していませんが、私が理解したことに基づいて
xスケールは同じように見えますが、同じではないyスケールです。これは、scales = "free"を指定したためです。
scales = "free_x"を指定して、xのみを解放できます(この場合、predが定義により同じ範囲を持っているのと同じです)。
p <- ggplot(plot, aes(x = pred, y = value)) + geom_point(size = 2.5) + theme_bw()
p <- p + facet_wrap(~variable, scales = "free_x")
私のために働いた、写真を見て
私はあなたがそれをあまりにも難しくしていると思う-一度最小と最大の式に基づいて制限を定義したことを覚えているようだし、ファセットされた場合、それらの値のみを使用したと思うが、コードが見つからない