web-dev-qa-db-ja.com

ggplot2でgamfitの滑らかなコンポーネントをプロットすることは可能ですか?

gamパッケージのmgcvを使用してモデルをフィッティングし、結果をmodelに格納します。これまで、plot(model)を使用してスムーズなコンポーネントを調べてきました。 。私は最近ggplot2を使い始め、その出力が気に入っています。だから私は疑問に思っています、ggplot2を使用してこれらのグラフをプロットすることは可能ですか?

次に例を示します。

x1 = rnorm(1000)
x2 = rnorm(1000)
n = rpois(1000, exp(x1) + x2^2)

model = gam(n ~ s(x1, k=10) + s(x2, k=20), family="poisson")
plot(model, rug=FALSE, select=1)
plot(model, rug=FALSE, select=2)

そして、私はs(x1, k=10)s(x2, k=20)に興味があります。

部分的な答え:

plot.gammgcv:::plot.mgcv.smoothを深く掘り下げ、滑らかなコンポーネントから予測された効果と標準誤差を抽出する独自の関数を作成しました。 plot.gamのすべてのオプションとケースを処理するわけではないので、部分的な解決策としか考えていませんが、私にとってはうまく機能します。

EvaluateSmooths = function(model, select=NULL, x=NULL, n=100) {
  if (is.null(select)) {
    select = 1:length(model$smooth)
  }
  do.call(rbind, lapply(select, function(i) {
    smooth = model$smooth[[i]]
    data = model$model

    if (is.null(x)) {
      min = min(data[smooth$term])
      max = max(data[smooth$term])
      x = seq(min, max, length=n)
    }
    if (smooth$by == "NA") {
      by.level = "NA"
    } else {
      by.level = smooth$by.level
    }
    range = data.frame(x=x, by=by.level)
    names(range) = c(smooth$term, smooth$by)

    mat = PredictMat(smooth, range)
    par = smooth$first.para:smooth$last.para

    y = mat %*% model$coefficients[par]

    se = sqrt(rowSums(
      (mat %*% model$Vp[par, par, drop = FALSE]) * mat
    ))

    return(data.frame(
      label=smooth$label
      , x.var=smooth$term
      , x.val=x
      , by.var=smooth$by
      , by.val=by.level
      , value = y
      , se = se
    ))
  }))
}

これにより、スムーズなコンポーネントを含む「溶融」データフレームが返されるため、上記の例でggplotを使用できるようになりました。

smooths = EvaluateSmooths(model)

ggplot(smooths, aes(x.val, value)) + 
  geom_line() + 
  geom_line(aes(y=value + 2*se), linetype="dashed") + 
  geom_line(aes(y=value - 2*se), linetype="dashed") + 
  facet_grid(. ~ x.var)

一般的なケースでこれを可能にするパッケージを誰かが知っているなら、私は非常に感謝するでしょう。

23
unique2

Visregパッケージをplyrパッケージと組み合わせて使用​​できます。 visregは基本的に、predict()を使用できるすべてのモデルをプロットします。

library(mgcv)
library(visreg)
library(plyr)
library(ggplot2)

# Estimating gam model:
x1 = rnorm(1000)
x2 = rnorm(1000)
n = rpois(1000, exp(x1) + x2^2)
model = gam(n ~ s(x1, k=10) + s(x2, k=20), family="poisson")

# use plot = FALSE to get plot data from visreg without plotting
plotdata <- visreg(model, type = "contrast", plot = FALSE)

# The output from visreg is a list of the same length as the number of 'x' variables,
#   so we use ldply to pick the objects we want from the each list part and make a dataframe: 
smooths <- ldply(plotdata, function(part)   
  data.frame(Variable = part$meta$x, 
             x=part$fit[[part$meta$x]], 
             smooth=part$fit$visregFit, 
             lower=part$fit$visregLwr, 
             upper=part$fit$visregUpr))

# The ggplot:
ggplot(smooths, aes(x, smooth)) + geom_line() +
  geom_line(aes(y=lower), linetype="dashed") + 
  geom_line(aes(y=upper), linetype="dashed") + 
  facet_grid(. ~ Variable, scales = "free_x")

すべてを関数に入れて、モデルからの残差を表示するオプションを追加できます(res = TRUE):

ggplot.model <- function(model, type="conditional", res=FALSE, 
                       col.line="#7fc97f", col.point="#beaed4", size.line=1, size.point=1) {
  require(visreg)
  require(plyr)
  plotdata <- visreg(model, type = type, plot = FALSE)
  smooths <- ldply(plotdata, function(part)   
    data.frame(Variable = part$meta$x, 
             x=part$fit[[part$meta$x]], 
             smooth=part$fit$visregFit, 
             lower=part$fit$visregLwr, 
             upper=part$fit$visregUpr))
  residuals <- ldply(plotdata, function(part)
    data.frame(Variable = part$meta$x, 
               x=part$res[[part$meta$x]], 
               y=part$res$visregRes))
  if (res)
    ggplot(smooths, aes(x, smooth)) + geom_line(col=col.line, size=size.line) +
      geom_line(aes(y=lower), linetype="dashed", col=col.line, size=size.line) +
      geom_line(aes(y=upper), linetype="dashed", col=col.line, size=size.line) +
      geom_point(data = residuals, aes(x, y), col=col.point, size=size.point) +
      facet_grid(. ~ Variable, scales = "free_x")
  else
    ggplot(smooths, aes(x, smooth)) + geom_line(col=col.line, size=size.line) +
      geom_line(aes(y=lower), linetype="dashed", col=col.line, size=size.line) +
      geom_line(aes(y=upper), linetype="dashed", col=col.line, size=size.line) +
      facet_grid(. ~ Variable, scales = "free_x")
  }

ggplot.model(model)
ggplot.model(model, res=TRUE)

ggplot without residualsggplot with residuals 色は http://colorbrewer2.org/ から選択されます。

20
Dag Hjermann

参考までに、visregggオブジェクトを直接出力できます。

visreg(model, "x1", gg=TRUE)

enter image description here

4
Patrick Breheny