web-dev-qa-db-ja.com

RでのSVMによる1クラス分類

1クラスのSVMモデルを構築するために、Rでパッケージe1071を使用しています。私はそれを行う方法がわかりませんし、インターネット上で例を見つけることもできません。

たとえば、「iris」データセットのクラス「setosa」を1つのクラスの分類モデルで特徴付けるためのサンプルコードを提供し、同じデータセット内のすべての例をテストできますか(どの例がに属するかを確認するため) 「setosa」クラスの特徴とそうでない例)?

12
dreamscollector

私はこれがあなたが望むものだと思います:

library(e1071)
data(iris)
df <- iris

df <- subset(df ,  Species=='setosa')  #choose only one of the classes

x <- subset(df, select = -Species) #make x variables
y <- df$Species #make y variable(dependent)
model <- svm(x, y,type='one-classification') #train an one-classification model 


print(model)
summary(model) #print summary

# test on the whole set
pred <- predict(model, subset(iris, select=-Species)) #create predictions

出力:

-概要:

> summary(model)

Call:
svm.default(x = x, y = y, type = "one-classification")


Parameters:
   SVM-Type:  one-classification 
 SVM-Kernel:  radial 
      gamma:  0.25 
         nu:  0.5 

Number of Support Vectors:  27




Number of Classes: 1

-予測(視覚的な理由から、ここには一部の予測のみが表示されます(Species == 'setosa')):

> pred
    1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16    17    18    19    20    21    22 
 TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE 
   23    24    25    26    27    28    29    30    31    32    33    34    35    36    37    38    39    40    41    42    43    44 
FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE 
   45    46    47    48    49    50 
FALSE  TRUE  TRUE  TRUE  TRUE  TRUE 
21
LyzandeR

正確に少し精巧なコード:train = 78.125 test = 91.53:

library(e1071)
library(caret)
library(NLP)
library(tm)

data(iris)

iris$SpeciesClass[iris$Species=="versicolor"] <- "TRUE"
iris$SpeciesClass[iris$Species!="versicolor"] <- "FALSE"
trainPositive<-subset(iris,SpeciesClass=="TRUE")
testnegative<-subset(iris,SpeciesClass=="FALSE")
inTrain<-createDataPartition(1:nrow(trainPositive),p=0.6,list=FALSE)

trainpredictors<-trainPositive[inTrain,1:4]
trainLabels<-trainPositive[inTrain,6]

testPositive<-trainPositive[-inTrain,]
testPosNeg<-rbind(testPositive,testnegative)

testpredictors<-testPosNeg[,1:4]
testLabels<-testPosNeg[,6]

svm.model<-svm(trainpredictors,y=NULL,
               type='one-classification',
               nu=0.10,
               scale=TRUE,
               kernel="radial")

svm.predtrain<-predict(svm.model,trainpredictors)
svm.predtest<-predict(svm.model,testpredictors)

# confusionMatrixTable<-table(Predicted=svm.pred,Reference=testLabels)
# confusionMatrix(confusionMatrixTable,positive='TRUE')

confTrain<-table(Predicted=svm.predtrain,Reference=trainLabels)
confTest<-table(Predicted=svm.predtest,Reference=testLabels)

confusionMatrix(confTest,positive='TRUE')

print(confTrain)
print(confTest)
5
Chandan Gautam
library(e1071)
library(caret)
library(NLP)
library(tm)

data(iris)

iris$SpeciesClass[iris$Species=="versicolor"] <- "TRUE"
iris$SpeciesClass[iris$Species!="versicolor"] <- "FALSE"
trainPositive<-subset(iris,SpeciesClass=="TRUE")
testnegative<-subset(iris,SpeciesClass=="FALSE")
inTrain<-createDataPartition(1:nrow(trainPositive),p=0.6,list=FALSE)

trainpredictors<-trainPositive[inTrain,1:4]
trainLabels<-trainPositive[inTrain,6]

testPositive<-trainPositive[-inTrain,]
testPosNeg<-rbind(testPositive,testnegative)

testpredictors<-testPosNeg[,1:4]
testLabels<-testPosNeg[,6]

svm.model<-svm(trainpredictors,y=NULL,
               type='one-classification',
               nu=0.10,
               scale=TRUE,
               kernel="radial")

svm.predtrain<-predict(svm.model,trainpredictors)
svm.predtest<-predict(svm.model,testpredictors)

# confusionMatrixTable<-table(Predicted=svm.pred,Reference=testLabels)
# confusionMatrix(confusionMatrixTable,positive='TRUE')

confTrain<-table(Predicted=svm.predtrain,Reference=trainLabels)
confTest<-table(Predicted=svm.predtest,Reference=testLabels)

confusionMatrix(confTest,positive='TRUE')

print(confTrain)
print(confTest)
0
Atul Chandra