私はcaret
パッケージのtrain
関数を10分割交差検証で使用しました。次のように、trControl
にclassProbs = TRUE
を設定することにより、予測クラスのクラス確率も取得しました。
myTrainingControl <- trainControl(method = "cv",
number = 10,
savePredictions = TRUE,
classProbs = TRUE,
verboseIter = TRUE)
randomForestFit = train(x = input[3:154],
y = as.factor(input$Target),
method = "rf",
trControl = myTrainingControl,
preProcess = c("center","scale"),
ntree = 50)
私が得ている出力予測は次のとおりです。
pred obs 0 1 rowIndex mtry Resample
1 0 1 0.52 0.48 28 12 Fold01
2 0 0 0.58 0.42 43 12 Fold01
3 0 1 0.58 0.42 51 12 Fold01
4 0 0 0.68 0.32 55 12 Fold01
5 0 0 0.62 0.38 59 12 Fold01
6 0 1 0.92 0.08 71 12 Fold01
このデータを使用して、ROCとROCでのAUCを計算したいと思います。どうすればこれを達成できますか?
AUCのサンプル例:
rf_output=randomForest(x=predictor_data, y=target, importance = TRUE, ntree = 10001, proximity=TRUE, sampsize=sampsizes)
library(ROCR)
predictions=as.vector(rf_output$votes[,2])
pred=prediction(predictions,target)
perf_AUC=performance(pred,"auc") #Calculate the AUC value
[email protected][[1]]
perf_ROC=performance(pred,"tpr","fpr") #plot the actual ROC curve
plot(perf_ROC, main="ROC plot")
text(0.5,0.5,paste("AUC = ",format(AUC, digits=5, scientific=FALSE)))
またはpROC
とcaret
を使用する
library(caret)
library(pROC)
data(iris)
iris <- iris[iris$Species == "virginica" | iris$Species == "versicolor", ]
iris$Species <- factor(iris$Species) # setosa should be removed from factor
samples <- sample(NROW(iris), NROW(iris) * .5)
data.train <- iris[samples, ]
data.test <- iris[-samples, ]
forest.model <- train(Species ~., data.train)
result.predicted.prob <- predict(forest.model, data.test, type="prob") # Prediction
result.roc <- roc(data.test$Species, result.predicted.prob$versicolor) # Draw ROC curve.
plot(result.roc, print.thres="best", print.thres.best.method="closest.topleft")
result.coords <- coords(result.roc, "best", best.method="closest.topleft", ret=c("threshold", "accuracy"))
print(result.coords)#to get threshold and accuracy