100個の変数と3000個の観測値を持つ大きなデータセットがあります。相関性が高い、または冗長な変数(列)を検出して、データフレームの次元を削除します。私はこれを試しましたが、1つの列と他の列の間の相関のみを計算します。いつもエラーメッセージが出ます
for(i in 1:ncol(predicteurs)){
correlations <- cor(predicteurs[,i],predicteurs[,2])
names(correlations[which.max(abs(correlations))])
}
Warning messages:
1: In cor(predicteurs[, i], predicteurs[, 2]) :
the standard deviation is zero
2: In cor(predicteurs[, i], predicteurs[, 2]) :
the standard deviation is zero
誰か助けてもらえますか?
相関行列を集めてみます。
# install.packages(c('tibble', 'dplyr', 'tidyr'))
library(tibble)
library(dplyr)
library(tidyr)
d <- data.frame(x1=rnorm(10),
x2=rnorm(10),
x3=rnorm(10))
d2 <- d %>%
as.matrix %>%
cor %>%
as.data.frame %>%
rownames_to_column(var = 'var1') %>%
gather(var2, value, -var1)
var1 var2 value
1 x1 x1 1.00000000
2 x1 x2 -0.05936703
3 x1 x3 -0.37479619
4 x2 x1 -0.05936703
5 x2 x2 1.00000000
6 x2 x3 0.43716004
7 x3 x1 -0.37479619
8 x3 x2 0.43716004
9 x3 x3 1.00000000
# .5 is an arbitrary number
filter(d2, value > .5)
# remove duplicates
d2 %>%
mutate(var_order = paste(var1, var2) %>%
strsplit(split = ' ') %>%
map_chr( ~ sort(.x) %>%
paste(collapse = ' '))) %>%
mutate(cnt = 1) %>%
group_by(var_order) %>%
mutate(cumsum = cumsum(cnt)) %>%
filter(cumsum != 2) %>%
ungroup %>%
select(-var_order, -cnt, -cumsum)
var1 var2 value
1 x1 x1 1
2 x1 x2 -0.0594
3 x1 x3 -0.375
4 x2 x2 1
5 x2 x3 0.437
6 x3 x3 1
有効に見える別のアプローチは次のとおりです。
set.seed(101)
mat = matrix(runif(12), 3)
cor_mat = cor(mat)
cor_mat
# [,1] [,2] [,3] [,4]
#[1,] 1.0000000 0.1050075 0.9159599 -0.5108936
#[2,] 0.1050075 1.0000000 0.4952340 -0.9085390
#[3,] 0.9159599 0.4952340 1.0000000 -0.8129071
#[4,] -0.5108936 -0.9085390 -0.8129071 1.0000000
which(cor_mat > 0.15 & lower.tri(cor_mat), arr.ind = T, useNames = F)
# [,1] [,2]
#[1,] 3 1
#[2,] 3 2
私はまったく同じ問題を抱えていましたが、これが私がそれを解決した方法です:
install.packages("Hmisc") # Only run on first use
library(Hmisc)
rawdata <- read.csv("/path/to/your/datafile", sep="\t", stringsAsFactors=FALSE) # In my case the separator in the file was "\t", adjust accordingly.
ccs <- as.matrix(rawdata)
rcorr(ccs, type="pearson") # You can also use "spearman"
これは、相関値andのそれぞれのp-valuesを出力するという他の方法よりも優れています。