行列の各rowを固定ベクトルで除算したいと思います。例えば
mat<-matrix(1,ncol=2,nrow=2,TRUE)
dev<-c(5,10)
与えるmat/dev
は、それぞれを列でdev
で除算します。
[,1] [,2]
[1,] 0.2 0.2
[2,] 0.1 0.1
ただし、結果としてこれを取得したい、つまりrow-wise操作を実行します:
rbind(mat[1,]/dev, mat[2,]/dev)
[,1] [,2]
[1,] 0.2 0.1
[2,] 0.2 0.1
そこに到達するための明示的なコマンドはありますか?
コード長を増やすためのいくつかの方法を次に示します。
t(t(mat) / dev)
mat / dev[col(mat)] # @DavidArenburg & @akrun
mat %*% diag(1 / dev)
sweep(mat, 2, dev, "/")
t(apply(mat, 1, "/", dev))
plyr::aaply(mat, 1, "/", dev)
mat / rep(dev, each = nrow(mat))
mat / t(replace(t(mat), TRUE, dev))
mapply("/", as.data.frame(mat), dev) # added later
mat / matrix(dev, nrow(mat), ncol(mat), byrow = TRUE) # added later
do.call(rbind, lapply(as.data.frame(t(mat)), "/", dev))
mat2 <- mat; for(i in seq_len(nrow(mat2))) mat2[i, ] <- mat2[i, ] / dev
mat
がデータフレームであり、データフレーム結果を生成する場合、mat /
で始まるすべてのソリューションも機能します。 sweep
ソリューションと最後のソリューション、つまりmat2
のソリューションにも同じことが言えます。 mapply
ソリューションはdata.framesで機能しますが、マトリックスを生成します。
mat
が行列ではなくプレーンベクトルの場合、これらのいずれかが1列の行列を返します
t(t(mat) / dev)
mat / t(replace(t(mat), TRUE, dev))
そしてこれはベクトルを返します:
plyr::aaply(mat, 1, "/", dev)
その他は、エラー、警告、または望ましい答えではありません。
コードの簡潔さと明快さは速度よりも重要かもしれませんが、ここでは完全を期すために、10回の繰り返しと100回の繰り返しを使用したベンチマークを示します。
library(microbenchmark)
library(plyr)
set.seed(84789)
mat<-matrix(runif(1e6),nrow=1e5)
dev<-runif(10)
microbenchmark(times=10L,
"1" = t(t(mat) / dev),
"2" = mat %*% diag(1/dev),
"3" = sweep(mat, 2, dev, "/"),
"4" = t(apply(mat, 1, "/", dev)),
"5" = mat / rep(dev, each = nrow(mat)),
"6" = mat / t(replace(t(mat), TRUE, dev)),
"7" = aaply(mat, 1, "/", dev),
"8" = do.call(rbind, lapply(as.data.frame(t(mat)), "/", dev)),
"9" = {mat2 <- mat; for(i in seq_len(nrow(mat2))) mat2[i, ] <- mat2[i, ] / dev},
"10" = mat/dev[col(mat)])
与える:
Unit: milliseconds
expr min lq mean median uq max neval
1 7.957253 8.136799 44.13317 8.370418 8.597972 366.24246 10
2 4.678240 4.693771 10.11320 4.708153 4.720309 58.79537 10
3 15.594488 15.691104 16.38740 15.843637 16.559956 19.98246 10
4 96.616547 104.743737 124.94650 117.272493 134.852009 177.96882 10
5 17.631848 17.654821 18.98646 18.295586 20.120382 21.30338 10
6 19.097557 19.365944 27.78814 20.126037 43.322090 48.76881 10
7 8279.428898 8496.131747 8631.02530 8644.798642 8741.748155 9194.66980 10
8 509.528218 524.251103 570.81573 545.627522 568.929481 821.17562 10
9 161.240680 177.282664 188.30452 186.235811 193.250346 242.45495 10
10 7.713448 7.815545 11.86550 7.965811 8.807754 45.87518 10
100回の繰り返しで20ミリ秒未満かかったすべてのテストを再実行します。
microbenchmark(times=100L,
"1" = t(t(mat) / dev),
"2" = mat %*% diag(1/dev),
"3" = sweep(mat, 2, dev, "/"),
"5" = mat / rep(dev, each = nrow(mat)),
"6" = mat / t(replace(t(mat), TRUE, dev)),
"10" = mat/dev[col(mat)])
与える:
Unit: milliseconds
expr min lq mean median uq max neval
1 8.010749 8.188459 13.972445 8.560578 10.197650 299.80328 100
2 4.672902 4.734321 5.802965 4.769501 4.985402 20.89999 100
3 15.224121 15.428518 18.707554 15.836116 17.064866 42.54882 100
5 17.625347 17.678850 21.464804 17.847698 18.209404 303.27342 100
6 19.158946 19.361413 22.907115 19.772479 21.142961 38.77585 100
10 7.754911 7.939305 9.971388 8.010871 8.324860 25.65829 100
したがって、これらのテストの両方で#2(diag
を使用)が最速です。その理由は、BLASへのほぼ直接的なアピールにある可能性がありますが、#1はより高価なt
に依存しています。
行に適用されるapply
関数を探しています:
t(apply(mat, 1, function(x) x/dev))