web-dev-qa-db-ja.com

R:データフレームをトレーニング、検証、テストセットに分割する方法は?

Rを使用して機械学習を行っています。標準的な機械学習の方法論に従って、データをトレーニング、検証、およびテストデータセットにランダムに分割します。 Rでそれを行うにはどうすればよいですか?

私は2つのデータセットに分割する方法に関するいくつかの関連する質問があることを知っています(たとえば、これは post )が、3つの分割されたデータセットに対してそれを行う方法は明らかではありません。ところで、正しいアプローチは3つのデータセット(ハイパーパラメーターを調整するための検証セットを含む)を使用することです。

10

2つのグループ(floorを使用)のこのリンクされたアプローチは、3つに自然に拡張されません。やりたい

_spec = c(train = .6, test = .2, validate = .2)

g = sample(cut(
  seq(nrow(df)), 
  nrow(df)*cumsum(c(0,spec)),
  labels = names(spec)
))

res = split(df, g)
_

結果を確認するには:

_sapply(res, nrow)/nrow(df)
#    train     test validate 
#  0.59375  0.18750  0.21875 
# or...
addmargins(prop.table(table(g)))
#    train     test validate      Sum 
#  0.59375  0.18750  0.21875  1.00000 
_

set.seed(1)を直前に実行すると、結果は次のようになります

_$train
                   mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet Sportabout 18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Merc 240D         24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230          22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280          19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C         17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE        16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL        17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC       15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Fiat 128          32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Toyota Corolla    33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Dodge Challenger  15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin       15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Pontiac Firebird  19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9         27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2     26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Volvo 142E        21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

$test
                    mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Valiant            18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Cadillac Fleetwood 10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Toyota Corona      21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Camaro Z28         13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Ford Pantera L     15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino       19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6

$validate
                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
_

Data.framesには_res$test_または_res[["test"]]_のようにアクセスできます。

cutは、共有に基づいたパーティション分割の標準ツールです。

15
Frank

この post に示したアプローチに従って、テスト、検証、およびテストのためにデータフレームを3つの新しいデータフレームに分割するためのRコードを使用しています。 3つのサブセットは重複していません。

# Create random training, validation, and test sets

# Set some input variables to define the splitting.
# Input 1. The data frame that you want to split into training, validation, and test.
df <- mtcars

# Input 2. Set the fractions of the dataframe you want to split into training, 
# validation, and test.
fractionTraining   <- 0.60
fractionValidation <- 0.20
fractionTest       <- 0.20

# Compute sample sizes.
sampleSizeTraining   <- floor(fractionTraining   * nrow(df))
sampleSizeValidation <- floor(fractionValidation * nrow(df))
sampleSizeTest       <- floor(fractionTest       * nrow(df))

# Create the randomly-sampled indices for the dataframe. Use setdiff() to
# avoid overlapping subsets of indices.
indicesTraining    <- sort(sample(seq_len(nrow(df)), size=sampleSizeTraining))
indicesNotTraining <- setdiff(seq_len(nrow(df)), indicesTraining)
indicesValidation  <- sort(sample(indicesNotTraining, size=sampleSizeValidation))
indicesTest        <- setdiff(indicesNotTraining, indicesValidation)

# Finally, output the three dataframes for training, validation and test.
dfTraining   <- df[indicesTraining, ]
dfValidation <- df[indicesValidation, ]
dfTest       <- df[indicesTest, ]

これらのいくつかは非常に複雑に思えます。サンプルを使用して任意のデータセットを3つ、または任意の数のセットに分割する簡単な方法を次に示します。

# Simple into 3 sets.
idx <- sample(seq(1, 3), size = nrow(iris), replace = TRUE, prob = c(.8, .2, .2))
train <- iris[idx == 1,]
test <- iris[idx == 2,]
cal <- iris[idx == 3,]

むしろ再利用可能なコードが必要な場合:

# Or a function to split into arbitrary number of sets
test_split <- function(df, cuts, prob, ...)
{
  idx <- sample(seq(1, cuts), size = nrow(df), replace = TRUE, prob = prob, ...)
  z = list()
  for (i in 1:cuts)
    z[[i]] <- df[idx == i,]
  z
}
z <- test_split(iris, 4, c(0.7, .1, .1, .1))

train <- z[1]
test <- z[2]
cal <- z[3]
other <- z[4]
4
pedram

以下に、60、20、20の分割を使用した1つのソリューションを示します。これにより、重複がないことも保証されます。ただし、分割を適応させるのは面倒です。誰かが私を助けることができれば、私はそれを感謝します

   # Draw a random, stratified sample including p percent of the data    
   idx.train <- createDataPartition(y = known$return_customer, p = 0.8, list = FALSE) 
   train <- known[idx.train, ] # training set with p = 0.8
   # test set with p = 0.2 (drop all observations with train indeces)
   test <-  known[-idx.train, ] 
   idx.validation <- createDataPartition(y = train$return_customer, p = 0.25, list = FALSE) # Draw a random, stratified sample of ratio p of the data
   validation <- train[idx.validation, ] #validation set with p = 0.8*0.25 = 0.2
   train60 <- train[-idx.validation, ] #final train set with p= 0.8*0.75 = 0.6
0
Sev