Rを使用して機械学習を行っています。標準的な機械学習の方法論に従って、データをトレーニング、検証、およびテストデータセットにランダムに分割します。 Rでそれを行うにはどうすればよいですか?
私は2つのデータセットに分割する方法に関するいくつかの関連する質問があることを知っています(たとえば、これは post )が、3つの分割されたデータセットに対してそれを行う方法は明らかではありません。ところで、正しいアプローチは3つのデータセット(ハイパーパラメーターを調整するための検証セットを含む)を使用することです。
2つのグループ(floor
を使用)のこのリンクされたアプローチは、3つに自然に拡張されません。やりたい
_spec = c(train = .6, test = .2, validate = .2)
g = sample(cut(
seq(nrow(df)),
nrow(df)*cumsum(c(0,spec)),
labels = names(spec)
))
res = split(df, g)
_
結果を確認するには:
_sapply(res, nrow)/nrow(df)
# train test validate
# 0.59375 0.18750 0.21875
# or...
addmargins(prop.table(table(g)))
# train test validate Sum
# 0.59375 0.18750 0.21875 1.00000
_
set.seed(1)
を直前に実行すると、結果は次のようになります
_$train
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
$test
mpg cyl disp hp drat wt qsec vs am gear carb
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
$validate
mpg cyl disp hp drat wt qsec vs am gear carb
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
_
Data.framesには_res$test
_または_res[["test"]]
_のようにアクセスできます。
cut
は、共有に基づいたパーティション分割の標準ツールです。
この post に示したアプローチに従って、テスト、検証、およびテストのためにデータフレームを3つの新しいデータフレームに分割するためのRコードを使用しています。 3つのサブセットは重複していません。
# Create random training, validation, and test sets
# Set some input variables to define the splitting.
# Input 1. The data frame that you want to split into training, validation, and test.
df <- mtcars
# Input 2. Set the fractions of the dataframe you want to split into training,
# validation, and test.
fractionTraining <- 0.60
fractionValidation <- 0.20
fractionTest <- 0.20
# Compute sample sizes.
sampleSizeTraining <- floor(fractionTraining * nrow(df))
sampleSizeValidation <- floor(fractionValidation * nrow(df))
sampleSizeTest <- floor(fractionTest * nrow(df))
# Create the randomly-sampled indices for the dataframe. Use setdiff() to
# avoid overlapping subsets of indices.
indicesTraining <- sort(sample(seq_len(nrow(df)), size=sampleSizeTraining))
indicesNotTraining <- setdiff(seq_len(nrow(df)), indicesTraining)
indicesValidation <- sort(sample(indicesNotTraining, size=sampleSizeValidation))
indicesTest <- setdiff(indicesNotTraining, indicesValidation)
# Finally, output the three dataframes for training, validation and test.
dfTraining <- df[indicesTraining, ]
dfValidation <- df[indicesValidation, ]
dfTest <- df[indicesTest, ]
これらのいくつかは非常に複雑に思えます。サンプルを使用して任意のデータセットを3つ、または任意の数のセットに分割する簡単な方法を次に示します。
# Simple into 3 sets.
idx <- sample(seq(1, 3), size = nrow(iris), replace = TRUE, prob = c(.8, .2, .2))
train <- iris[idx == 1,]
test <- iris[idx == 2,]
cal <- iris[idx == 3,]
むしろ再利用可能なコードが必要な場合:
# Or a function to split into arbitrary number of sets
test_split <- function(df, cuts, prob, ...)
{
idx <- sample(seq(1, cuts), size = nrow(df), replace = TRUE, prob = prob, ...)
z = list()
for (i in 1:cuts)
z[[i]] <- df[idx == i,]
z
}
z <- test_split(iris, 4, c(0.7, .1, .1, .1))
train <- z[1]
test <- z[2]
cal <- z[3]
other <- z[4]
以下に、60、20、20の分割を使用した1つのソリューションを示します。これにより、重複がないことも保証されます。ただし、分割を適応させるのは面倒です。誰かが私を助けることができれば、私はそれを感謝します
# Draw a random, stratified sample including p percent of the data
idx.train <- createDataPartition(y = known$return_customer, p = 0.8, list = FALSE)
train <- known[idx.train, ] # training set with p = 0.8
# test set with p = 0.2 (drop all observations with train indeces)
test <- known[-idx.train, ]
idx.validation <- createDataPartition(y = train$return_customer, p = 0.25, list = FALSE) # Draw a random, stratified sample of ratio p of the data
validation <- train[idx.validation, ] #validation set with p = 0.8*0.25 = 0.2
train60 <- train[-idx.validation, ] #final train set with p= 0.8*0.75 = 0.6