web-dev-qa-db-ja.com

RでSVMの予測結果を解釈する方法は?

私はRを初めて使用し、e1071 RでのSVM分類用パッケージ。

次のコードを使用しました。

data <- loadNumerical()

model <- svm(data[,-ncol(data)], data[,ncol(data)], gamma=10)

print(predict(model, data[c(1:20),-ncol(data)]))

loadNumericalはデータをロードするためのもので、データは次の形式です(最初の8列が入力され、最後の列は分類です)。

   [,1] [,2] [,3] [,4] [,5] [,6] [,7]      [,8] [,9]
1    39    1   -1   43   -1    1    0 0.9050497    0
2    23   -1   -1   30   -1   -1    0 1.6624974    1
3    50   -1   -1   49    1    1    2 1.5571429    0
4    46   -1    1   19   -1   -1    0 1.3523685    0
5    36    1    1   29   -1    1    1 1.3812029    1
6    27   -1   -1   19    1    1    0 1.9403649    0
7    36   -1   -1   25   -1    1    0 2.3360004    0
8    41    1    1   23    1   -1    1 2.4899738    0
9    21   -1   -1   18    1   -1    2 1.2989637    1
10   39   -1    1   21   -1   -1    1 1.6121595    0

データの行数は500です。

上記のコードに示すように、最初の20行を予測用にテストしました。そして出力は:

         1          2          3          4          5          6          7 
0.04906014 0.88230392 0.04910760 0.04910719 0.87302217 0.04898187 0.04909523 
         8          9         10         11         12         13         14 
0.04909199 0.87224979 0.04913189 0.04893709 0.87812890 0.04909588 0.04910999 
        15         16         17         18         19         20 
0.89837037 0.04903778 0.04914173 0.04897789 0.87572114 0.87001066 

結果から直感的にわかるのは、結果が0に近い場合は0クラスを意味し、1に近い場合は1クラスにあることを示しています。

しかし、私の質問はどのようにして正確に結果を解釈できるかです:しきい値はありますかs以下の値がsは0として分類され、s以上の値は1として分類されますか?

そのようなsが存在する場合、どのようにしてそれを導出できますか?

24
Derrick Zhang

結果変数は数値であるため、SVMの回帰定式化を使用します。分類の定式化が必要だと思います。これを変更するには、結果を因子に強制するか、type="C-classification"を設定します。

回帰:

> model <- svm(vs ~ hp+mpg+gear,data=mtcars)
> predict(model)
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
       0.8529506670        0.8529506670        0.9558654451        0.8423224174 
  Hornet Sportabout             Valiant          Duster 360           Merc 240D 
       0.0747730699        0.6952501964        0.0123405904        0.9966162477 
           Merc 230            Merc 280           Merc 280C          Merc 450SE 
       0.9494836511        0.7297563543        0.6909235343       -0.0327165348 
         Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
      -0.0092851098       -0.0504982402        0.0319974842        0.0504292348 
  Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
      -0.0504750284        0.9769206963        0.9724676874        0.9494910097 
      Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
       0.9496260289        0.1349744908        0.1251344111        0.0395243313 
   Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
       0.0983094417        1.0041732099        0.4348209129        0.6349628695 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
       0.0009258333        0.0607896408        0.0507385269        0.8664157985 

分類:

> model <- svm(as.factor(vs) ~ hp+mpg+gear,data=mtcars)
> predict(model)
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
                  1                   1                   1                   1 
  Hornet Sportabout             Valiant          Duster 360           Merc 240D 
                  0                   1                   0                   1 
           Merc 230            Merc 280           Merc 280C          Merc 450SE 
                  1                   1                   1                   0 
         Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
                  0                   0                   0                   0 
  Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
                  0                   1                   1                   1 
      Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
                  1                   0                   0                   0 
   Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
                  0                   1                   0                   1 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
                  0                   0                   0                   1 
Levels: 0 1

また、生の分類だけでなく、予測として確率が必要な場合は、確率オプションでフィッティングすることで可能です。

確率あり:

> model <- svm(as.factor(vs) ~ hp+mpg+gear,data=mtcars,probability=TRUE)
> predict(model,mtcars,probability=TRUE)
          Mazda RX4       Mazda RX4 Wag          Datsun 710      Hornet 4 Drive 
                  1                   1                   1                   1 
  Hornet Sportabout             Valiant          Duster 360           Merc 240D 
                  0                   1                   0                   1 
           Merc 230            Merc 280           Merc 280C          Merc 450SE 
                  1                   1                   1                   0 
         Merc 450SL         Merc 450SLC  Cadillac Fleetwood Lincoln Continental 
                  0                   0                   0                   0 
  Chrysler Imperial            Fiat 128         Honda Civic      Toyota Corolla 
                  0                   1                   1                   1 
      Toyota Corona    Dodge Challenger         AMC Javelin          Camaro Z28 
                  1                   0                   0                   0 
   Pontiac Firebird           Fiat X1-9       Porsche 914-2        Lotus Europa 
                  0                   1                   0                   1 
     Ford Pantera L        Ferrari Dino       Maserati Bora          Volvo 142E 
                  0                   0                   0                   1 
attr(,"probabilities")
                            0          1
Mazda RX4           0.2393753 0.76062473
Mazda RX4 Wag       0.2393753 0.76062473
Datsun 710          0.1750089 0.82499108
Hornet 4 Drive      0.2370382 0.76296179
Hornet Sportabout   0.8519490 0.14805103
Valiant             0.3696019 0.63039810
Duster 360          0.9236825 0.07631748
Merc 240D           0.1564898 0.84351021
Merc 230            0.1780135 0.82198650
Merc 280            0.3402143 0.65978567
Merc 280C           0.3829336 0.61706640
Merc 450SE          0.9110862 0.08891378
Merc 450SL          0.8979497 0.10205025
Merc 450SLC         0.9223868 0.07761324
Cadillac Fleetwood  0.9187301 0.08126994
Lincoln Continental 0.9153549 0.08464509
Chrysler Imperial   0.9358186 0.06418140
Fiat 128            0.1627969 0.83720313
Honda Civic         0.1649799 0.83502008
Toyota Corolla      0.1781531 0.82184689
Toyota Corona       0.1780519 0.82194807
Dodge Challenger    0.8427087 0.15729129
AMC Javelin         0.8496198 0.15038021
Camaro Z28          0.9190294 0.08097056
Pontiac Firebird    0.8361349 0.16386511
Fiat X1-9           0.1490934 0.85090660
Porsche 914-2       0.5797194 0.42028060
Lotus Europa        0.4169587 0.58304133
Ford Pantera L      0.8731716 0.12682843
Ferrari Dino        0.8392372 0.16076281
Maserati Bora       0.8519422 0.14805785
Volvo 142E          0.2289231 0.77107694
34
Ian Fellows

このような分類子について非常に広く言えば、バイナリ応答変数の予測値は、その観測値がクラス1に属する確率と考えることができます(この場合、クラスには実際には0/1というラベルが付けられます。その他の場合は必要になります)関数が1または0として扱うクラスを知るには、Rは因子のラベルをアルファベット順にソートすることが多いため、最後のものがクラス1)になります。

したがって、最も一般的なことは、0.5をカットオフとして使用することです。ただし、その決定の背後には多くの数学があり、モデリング環境の詳細によっては異なるカットオフ値が必要になる可能性があることを警告しておきます。カットオフとして0.5を使用することは頻繁に行うのが最善ですが、SVMはかなり複雑な獣です。実際のデータへの適用を開始する前に、SVMと分類理論を一般的に読んでおくことをお勧めします。

私のお気に入りの参考文献は、Hastie、Tibshirani、およびFriedmanによる 統計的学習の要素 です。

4
joran