web-dev-qa-db-ja.com

Scala)の順列を列挙するコード

特定のリストのすべての順列を列挙する関数をコーディングしました。以下のコードについてどう思いますか?

def interleave(x:Int, l:List[Int]):List[List[Int]] = {
  l match { 
    case Nil => List(List(x))
    case (head::tail) =>
      (x :: head :: tail) :: interleave(x, tail).map(head :: _)
  }
}

def permutations(l:List[Int]):List[List[Int]] = {
  l match {
    case Nil => List(List())
    case (head::tail) =>
      for(p0 <- permutations(tail); p1 <- interleave(head, p0)) yield p1
  }
}
17
Michael

Seqが与えられると、permutationsメソッドを呼び出すことにより、すでに順列を持つことができます。

scala> List(1,2,3).permutations.mkString("\n")
res3: String = 
List(1, 2, 3)
List(1, 3, 2)
List(2, 1, 3)
List(2, 3, 1)
List(3, 1, 2)
List(3, 2, 1)

さらに、combinationsのメソッドもあります。

scala> List(1,2,3).combinations(2).mkString("\n")
res4: String = 
List(1, 2)
List(1, 3)
List(2, 3)

あなたの実装に関して、私は3つのことを言います:

(1)その格好良い

(2)イテレータを提供します(これは、要素を破棄できるstdコレクションアプローチです)。それ以外の場合は、1000のリストを取得できます!メモリに収まらない可能性のある要素。

scala> val longList = List((1 to 1000):_*)
longList: List[Int] = List(1, 2, 3,...


scala> permutations(longList)
Java.lang.OutOfMemoryError: Java heap space
    at scala.collection.immutable.List.$colon$colon(List.scala:67)
    at .interleave(<console>:11)
    at .interleave(<console>:11)
    at .interleave(<console>:11)

(3)次の理由から(Luigiによって観察されたように)重複した順列を削除する必要があります。

scala> permutations(List(1,1,3))
res4: List[List[Int]] = List(List(1, 1, 3), List(1, 1, 3), List(1, 3, 1), List(1, 3, 1), List(3, 1, 1), List(3, 1, 1))

scala> List(1,1,3).permutations.toList
res5: List[List[Int]] = List(List(1, 1, 3), List(1, 3, 1), List(3, 1, 1))
59
JaimeJorge

ここで違いを考慮してください:あなたのバージョン

scala> permutations(List(1,1,2)) foreach println
List(1, 1, 2)
List(1, 1, 2)
List(1, 2, 1)
List(1, 2, 1)
List(2, 1, 1)
List(2, 1, 1)

参照バージョン:

scala> List(1,1,2).permutations foreach println
List(1, 1, 2)
List(1, 2, 1)
List(2, 1, 1)
9
Luigi Plinge

たぶん、このスレッドはすでに十分に飽和していますが、私は自分のソリューションをミックスに投入すると思いました:

繰り返し要素がないと仮定します。

def permList(l: List[Int]): List[List[Int]] = l match {
   case List(ele) => List(List(ele))
   case list =>
     for {
       i <- List.range(0, list.length)
       p <- permList(list.slice(0, i) ++ list.slice(i + 1, list.length))
     } yield list(i) :: p
}

繰り返し要素を使用して、重複を防止します(それほどきれいではありません):

def permList(l: List[Int]): List[List[Int]] = l match {
  case List(ele) => List(List(ele))
  case list =>
    for {
      i <- List.range(0, list.length)
      val traversedList = list.slice(0, i)
      val nextEle = list(i)
      if !(traversedList contains nextEle)
      p <- permList(traversedList ++ list.slice(i + 1, list.length))
    } yield list(i) :: p
}

リストでスライスとインデックスを使用していることを考えると、これは潜在的に最も「list-y」ではありませんが、かなり簡潔で、少し異なる見方をしています。これは、リスト内の各要素を選択し、残っているものの順列を計算してから、単一の要素をそれらの順列のそれぞれに連結することによって機能します。これを行うためのより慣用的な方法があれば、私はそれについて聞いてみたいです。

6
Matthew Saltz

そのような関数はすでに標準ライブラリに存在していると思います: Seq.permutations 。では、なぜ車輪の再発明を行うのでしょうか。

6
Peter Schmitz

これは span に基づくバージョンです。

def perms[T](xs: List[T]): List[List[T]] = xs match {
  case List(_) => List(xs)
  case _ => for ( x <- xs
                ; val (l, r) = xs span { x!= }
                ; ys <- perms(l ++ r.tail)
                ) yield x :: ys
}
5
Adam Duracz
def permutator[T](list: List[T]): List[List[T]] = {

  def _p(total: Int, list: List[T]): List[List[T]] = {
    if (total == 0) {
      // End of the recursion tree
      list.map(List(_))
    } else {
      // Controlled combinatorial 
      // explosion while total > 0          
      for (i <- list;
           j <- _p(total - 1, list)) 
        yield { i :: j }

      // It is a recursion tree to generate the 
      // permutations of the elements
      // --------------------------------------
      // total = 0 => _p returns 3 elements (A, B, C) 
      // total = 1 => _p returns 3 * 3 List(List(A, A)...
      // total = 2 => _p returns 3 * 3 * 3 elements List(List(A, A, A)...

    }
  }

  _p(list.length - 1, list)
}

permutator(List("A", "B", "C"))

// output:
List(A, A, A),List(A, A, B),List(A, A, C),List(A, B, A),List(A, B, B),
List(A, B, C),List(A, C, A),List(A, C, B),List(A, C, C),List(B, A, A),
List(B, A, B),List(B, A, C),List(B, B, A),List(B, B, B),List(B, B, C),
List(B, C, A),List(B, C, B),List(B, C, C),List(C, A, A),List(C, A, B),
List(C, A, C),List(C, B, A),List(C, B, B),List(C, B, C),List(C, C, A),
List(C, C, B),List(C, C, C)
1
uranio

私の解決策は他のものよりも優れていると思います

  def withReplacements(chars: String, n: Int) {

        def internal(path: String, acc: List[String]): List[String] = {
          if (path.length == n) path :: acc else
            chars.toList.flatMap {c => internal(path + c, acc)}

        }

        val res = internal("", Nil)
        println("there are " + res.length + " " + n + "-permutations with replacement for " + chars + " = " + res)
      }                                       //> withReplacements: (chars: String, n: Int)Unit




      def noReplacements(chars: String, n: Int) {
        //val set = chars.groupBy(c => c).map {case (c, list) => (c -> list.length)}.toList

      import scala.collection.immutable.Queue

        type Set = Queue[Char]
        val set = Queue[Char](chars.toList: _*)

        type Result = Queue[String]

        // The idea is that recursions will scan the set with one element excluded.
        // Queue was chosen to implement the set to enable excluded element to bubble through it.
        def internal(set: Set, path: String, acc: Result): Result = {
          if (path.length == n) acc.enqueue(path)
          else
            set.foldLeft(acc, set.dequeue){case ((acc, (consumed_el, q)), e) =>
              (internal(q, consumed_el + path, acc), q.enqueue(consumed_el).dequeue)
            }. _1

        }

        val res = internal(set, "", Queue.empty)
        println("there are " + res.length + " " + n + "-permutations without replacement for " + set + " = " + res)

      }                                       //> noReplacements: (chars: String, n: Int)Unit



    withReplacements("abc", 2)                    //> there are 9 2-permutations with replacement for abc = List(aa, ab, ac, ba, 
                                                  //| bb, bc, ca, cb, cc)
    noReplacements("abc", 2)                      //> there are 6 2-permutations without replacement for Queue(a, b, c) = Queue(b
                                                  //| a, ca, cb, ab, ac, bc)


    noReplacements("abc", 3)                      //> there are 6 3-permutations without replacement for Queue(a, b, c) = Queue(c
                                                  //| ba, bca, acb, cab, bac, abc)


    withReplacements("abc", 3)                    //> there are 27 3-permutations with replacement for abc = List(aaa, aab, aac, 
                                                  //| aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, 
                                                  //| caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc)
  // you can run with replacements (3 chars, n = 4) but noReplacements will fail for obvious reason -- you cannont combine 3 chars to produce 4
    withReplacements("abc", 4)                    //> there are 81 4-permutations with replacement for abc = List(aaaa, aaab, aaa
                                                  //| c, aaba, aabb, aabc, aaca, aacb, aacc, abaa, abab, abac, abba, abbb, abbc, 
                                                  //| abca, abcb, abcc, acaa, acab, acac, acba, acbb, acbc, acca, accb, accc, baa
                                                  //| a, baab, baac, baba, babb, babc, baca, bacb, bacc, bbaa, bbab, bbac, bbba, 
                                                  //| bbbb, bbbc, bbca, bbcb, bbcc, bcaa, bcab, bcac, bcba, bcbb, bcbc, bcca, bcc
                                                  //| b, bccc, caaa, caab, caac, caba, cabb, cabc, caca, cacb, cacc, cbaa, cbab, 
                                                  //| cbac, cbba, cbbb, cbbc, cbca, cbcb, cbcc, ccaa, ccab, ccac, ccba, ccbb, ccb
                                                  //| c, ccca, cccb, cccc)
(1 to 3) foreach (u =>   noReplacements("aab", u))//> there are 3 1-permutations without replacement for Queue(a, a, b) = Queue(a
                                                  //| , a, b)
                                                  //| there are 6 2-permutations without replacement for Queue(a, a, b) = Queue(a
                                                  //| a, ba, ba, aa, ab, ab)
                                                  //| there are 6 3-permutations without replacement for Queue(a, a, b) = Queue(b
                                                  //| aa, aba, aba, baa, aab, aab)

これらは同じ3行のコードですが、可変の順列長がサポートされており、リストの連結が削除されています。

私は2番目をよりイデオマティックにし(アキュムレータのフラットマップマージが防止され、末尾再帰も増加します)、マルチセット順列に拡張して、「aab」、「aba」、「baa」と言うことができるようにしました。 "は(互いの)順列です。文字「a」は、代わ​​りに無限に2回交換可能(交換ケース付き)または1回のみ使用可能(交換なし)であるという考え方です。したがって、すべての文字が何回置き換え可能であるかを示すカウンターが必要です。

  // Rewrite with replacement a bit to eliminate flat-map merges.

    def norep2(chars: String, n: Int/* = chars.length*/) {

    import scala.collection.immutable.Queue

      type Set = Queue[Char]
      val set = Queue[Char](chars.toList: _*)

      type Result = Queue[String]

        def siblings(set: (Char, Set), offset: Int, path: String, acc: Result): Result = set match {case (bubble, queue) =>
            val children = descend(queue, path + bubble, acc) // bubble was used, it is not available for children that will produce combinations in other positions
            if (offset == 0) children else siblings(queue.enqueue(bubble).dequeue, offset - 1, path, children) // siblings will produce different chars at the same position, fetch next char for them
        }

      def descend(set: Set, path: String, acc: Result): Result = {
        if (path.length == n) acc.enqueue(path) else siblings(set.dequeue, set.size-1, path, acc)
      }

      val res = descend(set, "", Queue.empty)
      println("there are " + res.length + " " + n + "-permutations without replacement for " + set + " = " + res)

    }                                             //> norep2: (chars: String, n: Int)Unit

    assert(norep2("abc", 2) == noReplacements("abc", 2))
                                                  //> there are 6 2-permutations without replacement for Queue(a, b, c) = Queue(a
                                                  //| b, ac, bc, ba, ca, cb)
                                                  //| there are 6 2-permutations without replacement for Queue(a, b, c) = Queue(b
                                                  //| a, ca, cb, ab, ac, bc)
    assert(norep2("abc", 3) == noReplacements("abc", 3))
                                                  //> there are 6 3-permutations without replacement for Queue(a, b, c) = Queue(a
                                                  //| bc, acb, bca, bac, cab, cba)
                                                  //| there are 6 3-permutations without replacement for Queue(a, b, c) = Queue(c
                                                  //| ba, bca, acb, cab, bac, abc)


    def multisets(chars: String, n: Int/* = chars.length*/) {

      import scala.collection.immutable.Queue

      type Set = Queue[Bubble]
      type Bubble = (Char, Int)
      type Result = Queue[String]

        def siblings(set: (Bubble, Set), offset: Int, path: String, acc: Result): Result = set match {case ((char, avail), queue) =>
            val children = descend(if (avail - 1 == 0) queue else queue.enqueue(char -> {avail-1}), path + char, acc) // childern can reuse the symbol while if it is available
            if (offset == 0) children else siblings(queue.enqueue((char, avail)).dequeue, offset - 1, path, children)
        }

      def descend(set: Set, path: String, acc: Result): Result = {
        if (path.length == n) acc.enqueue(path) else siblings(set.dequeue, set.size-1, path, acc)
      }

      val set = Queue[Bubble]((chars.toList groupBy (c => c) map {case (k, v)  => (k, v.length)}).toList: _*)
      val res = descend(set, "", Queue.empty)
      println("there are " + res.length + " multiset " + n + "-permutations for " + set + " = " + res)

    }                                             //> multisets: (chars: String, n: Int)Unit



assert(multisets("abc", 2)  == norep2("abc", 2))  //> there are 6 multiset 2-permutations for Queue((b,1), (a,1), (c,1)) = Queue(
                                                  //| ba, bc, ac, ab, cb, ca)
                                                  //| there are 6 2-permutations without replacement for Queue(a, b, c) = Queue(a
                                                  //| b, ac, bc, ba, ca, cb)
assert(multisets("abc", 3)  == norep2("abc", 3))  //> there are 6 multiset 3-permutations for Queue((b,1), (a,1), (c,1)) = Queue(
                                                  //| bac, bca, acb, abc, cba, cab)
                                                  //| there are 6 3-permutations without replacement for Queue(a, b, c) = Queue(a
                                                  //| bc, acb, bca, bac, cab, cba)

assert (multisets("aaab", 2) == multisets2("aaab".toList, 2) )
                                                  //> there are 3 multiset 2-permutations for Queue((b,1), (a,3)) = Queue(ba, ab,
                                                  //|  aa)
                                                  //| there are 3 multiset 2-permutations for Queue((b,1), (a,3)) = List(List(a, 
                                                  //| a), List(b, a), List(a, b))
multisets("aab", 2)                               //> there are 3 multiset 2-permutations for Queue((b,1), (a,2)) = Queue(ba, ab,
                                                  //|  aa)

multisets("aab", 3)                               //> there are 3 multiset 3-permutations for Queue((b,1), (a,2)) = Queue(baa, ab
                                                  //| a, aab)
norep2("aab", 3)                                  //> there are 6 3-permutations without replacement for Queue(a, a, b) = Queue(a
                                                  //| ab, aba, aba, aab, baa, baa)

一般化として、マルチセット関数を使用して、置換の有無にかかわらず取得できます。例えば、

//take far more letters than resulting permutation length to emulate withReplacements
assert(multisets("aaaaabbbbbccccc", 3) == withReplacements("abc", 3))
                                                  //> there are 27 multiset 3-permutations for Queue((b,5), (a,5), (c,5)) = Queue
                                                  //| (bac, bab, baa, bcb, bca, bcc, bba, bbc, bbb, acb, aca, acc, aba, abc, abb,
                                                  //|  aac, aab, aaa, cba, cbc, cbb, cac, cab, caa, ccb, cca, ccc)
                                                  //| there are 27 3-permutations with replacement for abc = List(aaa, aab, aac, 
                                                  //| aba, abb, abc, aca, acb, acc, baa, bab, bac, bba, bbb, bbc, bca, bcb, bcc, 
                                                  //| caa, cab, cac, cba, cbb, cbc, cca, ccb, ccc)


//take one letter of each to emulate withoutReplacements
assert(multisets("aaaaabbbbbccccc", 3) == noReplacements("abc", 3))
                                                  //> there are 27 multiset 3-permutations for Queue((b,5), (a,5), (c,5)) = Queue
                                                  //| (bac, bab, baa, bcb, bca, bcc, bba, bbc, bbb, acb, aca, acc, aba, abc, abb,
                                                  //|  aac, aab, aaa, cba, cbc, cbb, cac, cab, caa, ccb, cca, ccc)
                                                  //| there are 6 3-permutations without replacement for Queue(a, b, c) = Queue(c
                                                  //| ba, bca, acb, cab, bac, abc)

順列にもっと興味があるなら、あなたは見るかもしれません

1
Val

あなたはScalaプログラミングスキルを練習していると思います。これは別のスキルです。シーケンスの先頭としてさまざまな要素を取り、filterを介して繰り返しを削除するというアイデアです。 O(n)+ O(nまたはおそらくn ^ 2)+ O(n)* P(n-1)はO(n)* P(n-1)によって支配されるため、コードは問題ありません。ここで、= P(n)は順列数であり、改善することはできません。

def permute(xs:List[Int]):List[List[Int]] = xs match {
  case Nil => List(List())
  case head::tail => {
    val len = xs.length
    val tps = (0 to len-1).map(xs.splitAt(_)).toList.filter(tp => !tp._1.contains(tp._2.head))
    tps.map(tp => permute(tp._1:::tp._2.tail).map(tp._2.head :: _)).flatten
  }
}
1
lcn

これは、サイクルの概念に基づく実装であり、2つの要素を持つ順列の簡単な実装です。 permuteメソッドで重複やスタックオーバーフローの側面を処理しません

object ImmuPermute extends App {
  def nextCycle(nums: List[Int]): List[Int] = {
    nums match {
      case Nil => Nil
      case head :: tail => tail :+ head
    }
  }
  def cycles(nums: List[Int]): List[List[Int]] = {
    def loop(l: List[Int], acc: List[List[Int]]): List[List[Int]] = {
      if (acc.size == nums.size)
        acc
      else {
        val next = nextCycle(l)
        loop(next, next :: acc)
      }
    }
    loop(nums, List(nums))
  }
  def permute(nums: List[Int]): List[List[Int]] = {
    nums match {
      case Nil => Nil
      case head :: Nil => List(List(head))
      case first :: second :: Nil => List(List(first, second), List(second, first))
      case _ => {
        val cycledList = cycles(nums)
        cycledList.flatMap { cycle =>
          val h = cycle.head
          val t = cycle.tail
          val permutedList = permute(t)
          permutedList map { pList =>
            h :: pList
          }
        }
      }
    }
  }
  val l = permute(List(1, 2, 3, 4))
  l foreach println
  println(l.size)
}
0
RajV