Sparkジョブの結果となる小さなデータセットがあります。このデータセットをジョブの終了時に便宜上データフレームに変換することを考えていますが、スキーマ:問題は下の最後のフィールド(topValues
)で、タプル(キーとカウント)のArrayBufferです。
_ val innerSchema =
StructType(
Array(
StructField("value", StringType),
StructField("count", LongType)
)
)
val outputSchema =
StructType(
Array(
StructField("name", StringType, nullable=false),
StructField("index", IntegerType, nullable=false),
StructField("count", LongType, nullable=false),
StructField("empties", LongType, nullable=false),
StructField("nulls", LongType, nullable=false),
StructField("uniqueValues", LongType, nullable=false),
StructField("mean", DoubleType),
StructField("min", DoubleType),
StructField("max", DoubleType),
StructField("topValues", innerSchema)
)
)
val result = stats.columnStats.map{ c =>
Row(c._2.name, c._1, c._2.count, c._2.empties, c._2.nulls, c._2.uniqueValues, c._2.mean, c._2.min, c._2.max, c._2.topValues.topN)
}
val rdd = sc.parallelize(result.toSeq)
val outputDf = sqlContext.createDataFrame(rdd, outputSchema)
outputDf.show()
_
私が得ているエラーはMatchErrorです:scala.MatchError: ArrayBuffer((10,2), (20,3), (8,1)) (of class scala.collection.mutable.ArrayBuffer)
オブジェクトをデバッグして検査すると、次のように表示されます。
_rdd: ParallelCollectionRDD[2]
rdd.data: "ArrayBuffer" size = 2
rdd.data(0): [age,2,6,0,0,3,14.666666666666666,8.0,20.0,ArrayBuffer((10,2), (20,3), (8,1))]
rdd.data(1): [gender,3,6,0,0,2,0.0,0.0,0.0,ArrayBuffer((M,4), (F,2))]
_
InnerSchemaでタプルのArrayBufferを正確に記述したようですが、Sparkは同意しません。
スキーマをどのように定義すべきか考えていますか?
val rdd = sc.parallelize(Array(Row(ArrayBuffer(1,2,3,4))))
val df = sqlContext.createDataFrame(
rdd,
StructType(Seq(StructField("arr", ArrayType(IntegerType, false), false)
)
df.printSchema
root
|-- arr: array (nullable = false)
| |-- element: integer (containsNull = false)
df.show
+------------+
| arr|
+------------+
|[1, 2, 3, 4]|
+------------+
Davidが指摘したように、ArrayTypeを使用する必要がありました。 Sparkはこれに満足しています:
val outputSchema =
StructType(
Array(
StructField("name", StringType, nullable=false),
StructField("index", IntegerType, nullable=false),
StructField("count", LongType, nullable=false),
StructField("empties", LongType, nullable=false),
StructField("nulls", LongType, nullable=false),
StructField("uniqueValues", LongType, nullable=false),
StructField("mean", DoubleType),
StructField("min", DoubleType),
StructField("max", DoubleType),
StructField("topValues", ArrayType(StructType(Array(
StructField("value", StringType),
StructField("count", LongType)
))))
)
)
import spark.implicits._
import org.Apache.spark.sql.types._
import org.Apache.spark.sql.functions._
val searchPath = "/path/to/.csv"
val columns = "col1,col2,col3,col4,col5,col6,col7"
val fields = columns.split(",").map(fieldName => StructField(fieldName, StringType,
nullable = true))
val customSchema = StructType(fields)
var dfPivot =spark.read.format("com.databricks.spark.csv").option("header","false").option("inferSchema", "false").schema(customSchema).load(searchPath)
カスタムスキーマを使用してデータをロードすると、デフォルトスキーマを使用してデータをロードする場合に比べてはるかに高速になります。