web-dev-qa-db-ja.com

sparkデータフレームからnull値を除外する方法

次のスキーマを使用して、sparkにデータフレームを作成しました。

root
 |-- user_id: long (nullable = false)
 |-- event_id: long (nullable = false)
 |-- invited: integer (nullable = false)
 |-- day_diff: long (nullable = true)
 |-- interested: integer (nullable = false)
 |-- event_owner: long (nullable = false)
 |-- friend_id: long (nullable = false)

データは以下のとおりです。

+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|     null|
|  78065188| 498404626|      0|       0|         0| 2904922087|     null|
| 282487230|2520855981|      0|      28|         0| 3749735525|     null|
| 335269852|1641491432|      0|       2|         0| 1490350911|     null|
| 437050836|1238456614|      0|       2|         0|  991277599|     null|
| 447244169|2095085551|      0|      -1|         0| 1579858878|     null|
| 516353916|1076364848|      0|       3|         1| 3597645735|     null|
| 528218683|1151525474|      0|       1|         0| 3433080956|     null|
| 531967718|3632072502|      0|       1|         0| 3863085861|     null|
| 627948360|2823119321|      0|       0|         0| 4092665803|     null|
| 811791433|3513954032|      0|       2|         0|  415464198|     null|
| 830686203|  99027353|      0|       0|         0| 3549822604|     null|
|1008893291|1115453150|      0|       2|         0| 2245155244|     null|
|1239364869|2824096896|      0|       2|         1| 2579294650|     null|
|1287950172|1076364848|      0|       0|         0| 3597645735|     null|
|1345896548|2658555390|      0|       1|         0| 2025118823|     null|
|1354205322|2564682277|      0|       3|         0| 2563033185|     null|
|1408344828|1255629030|      0|      -1|         1|  804901063|     null|
|1452633375|1334001859|      0|       4|         0| 1488588320|     null|
|1625052108|3297535757|      0|       3|         0| 1972598895|     null|
+----------+----------+-------+--------+----------+-----------+---------+

「friend_id」のフィールドにヌル値が含まれる行を除外したい。

scala> val aaa = test.filter("friend_id is null")

scala> aaa.count

私は:res52:Long = 0を得ましたが、これは明らかに正しくありません。それを取得する正しい方法は何ですか?

もう1つの質問は、friend_idフィールドの値を置き換えることです。 nullを除く他の値については、nullを0と1に置き換えたいです。私が理解できるコードは次のとおりです。

val aaa = train_friend_join.select($"user_id", $"event_id", $"invited", $"day_diff", $"interested", $"event_owner", ($"friend_id" != null)?1:0)

このコードも機能しません。誰がそれを修正することができますか?ありがとう

42
Steven Li

このデータ設定があるとしましょう(結果が再現できるように):

// declaring data types
case class Company(cName: String, cId: String, details: String)
case class Employee(name: String, id: String, email: String, company: Company)

// setting up example data
val e1 = Employee("n1", null, "[email protected]", Company("c1", "1", "d1"))
val e2 = Employee("n2", "2", "[email protected]", Company("c1", "1", "d1"))
val e3 = Employee("n3", "3", "[email protected]", Company("c1", "1", "d1"))
val e4 = Employee("n4", "4", "[email protected]", Company("c2", "2", "d2"))
val e5 = Employee("n5", null, "[email protected]", Company("c2", "2", "d2"))
val e6 = Employee("n6", "6", "[email protected]", Company("c2", "2", "d2"))
val e7 = Employee("n7", "7", "[email protected]", Company("c3", "3", "d3"))
val e8 = Employee("n8", "8", "[email protected]", Company("c3", "3", "d3"))
val employees = Seq(e1, e2, e3, e4, e5, e6, e7, e8)
val df = sc.parallelize(employees).toDF

データは次のとおりです。

+----+----+---------+---------+
|name|  id|    email|  company|
+----+----+---------+---------+
|  n1|null|[email protected]|[c1,1,d1]|
|  n2|   2|[email protected]|[c1,1,d1]|
|  n3|   3|[email protected]|[c1,1,d1]|
|  n4|   4|[email protected]|[c2,2,d2]|
|  n5|null|[email protected]|[c2,2,d2]|
|  n6|   6|[email protected]|[c2,2,d2]|
|  n7|   7|[email protected]|[c3,3,d3]|
|  n8|   8|[email protected]|[c3,3,d3]|
+----+----+---------+---------+

null idの従業員をフィルタリングするには、次のようにします-

df.filter("id is null").show

次のように正しく表示されます:

+----+----+---------+---------+
|name|  id|    email|  company|
+----+----+---------+---------+
|  n1|null|[email protected]|[c1,1,d1]|
|  n5|null|[email protected]|[c2,2,d2]|
+----+----+---------+---------+

質問の2番目の部分では、null idを0に、他の値を1に置き換えることができます。

df.withColumn("id", when($"id".isNull, 0).otherwise(1)).show

この結果:

+----+---+---------+---------+
|name| id|    email|  company|
+----+---+---------+---------+
|  n1|  0|[email protected]|[c1,1,d1]|
|  n2|  1|[email protected]|[c1,1,d1]|
|  n3|  1|[email protected]|[c1,1,d1]|
|  n4|  1|[email protected]|[c2,2,d2]|
|  n5|  0|[email protected]|[c2,2,d2]|
|  n6|  1|[email protected]|[c2,2,d2]|
|  n7|  1|[email protected]|[c3,3,d3]|
|  n8|  1|[email protected]|[c3,3,d3]|
+----+---+---------+---------+
56
Sachin Tyagi

またはdf.filter($"friend_id".isNotNull)など

38
Adriana Lazar
df.where(df.col("friend_id").isNull)
17

私にとって良い解決策は、null値を持つ行を削除することでした:

Dataset<Row> filtered = df.filter(row => !row.anyNull());

他のケースに興味がある場合は、row.anyNull()を呼び出してください。 (Java AP​​Iを使用したSpark 2.1.0)

15
chAlexey

それを行うには2つの方法があります。フィルター条件の作成 1)手動2)動的に。

サンプルDataFrame:

val df = spark.createDataFrame(Seq(
  (0, "a1", "b1", "c1", "d1"),
  (1, "a2", "b2", "c2", "d2"),
  (2, "a3", "b3", null, "d3"),
  (3, "a4", null, "c4", "d4"),
  (4, null, "b5", "c5", "d5")
)).toDF("id", "col1", "col2", "col3", "col4")

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
|  2|  a3|  b3|null|  d3|
|  3|  a4|null|  c4|  d4|
|  4|null|  b5|  c5|  d5|
+---+----+----+----+----+

1)フィルター条件の手動作成 つまり、DataFrame whereまたはfilter関数を使用します

df.filter(col("col1").isNotNull && col("col2").isNotNull).show

または

df.where("col1 is not null and col2 is not null").show

結果:

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
|  2|  a3|  b3|null|  d3|
+---+----+----+----+----+

2)フィルタ条件を動的に作成する:これは、列にnull値を持たせたくない場合や、列の数が多い場合に便利です。ほとんどの場合です。

これらの場合にフィルター条件を手動で作成すると、多くの時間が無駄になります。以下のコードでは、DataFrame列でmapおよびreduce関数を使用して動的にすべての列を含めています。

val filterCond = df.columns.map(x=>col(x).isNotNull).reduce(_ && _)

filterCondの外観:

filterCond: org.Apache.spark.sql.Column = (((((id IS NOT NULL) AND (col1 IS NOT NULL)) AND (col2 IS NOT NULL)) AND (col3 IS NOT NULL)) AND (col4 IS NOT NULL))

フィルタリング:

val filteredDf = df.filter(filterCond)

結果:

+---+----+----+----+----+
| id|col1|col2|col3|col4|
+---+----+----+----+----+
|  0|  a1|  b1|  c1|  d1|
|  1|  a2|  b2|  c2|  d2|
+---+----+----+----+----+
11
Ayush Vatsyayan

Javaのsparkのソリューションを次に示します。データ行を選択するには含む null。データセットデータがある場合、次のことを行います。

Dataset<Row> containingNulls =  data.where(data.col("COLUMN_NAME").isNull())

データを除外するにはwithout nullsを実行します:

Dataset<Row> withoutNulls = data.where(data.col("COLUMN_NAME").isNotNull())

多くの場合、データフレームにはString型の列が含まれますが、nullの代わりに ""のような空の文字列があります。そのようなデータも除外するには、次のようにします。

Dataset<Row> withoutNullsAndEmpty = data.where(data.col("COLUMN_NAME").isNotNull().and(data.col("COLUMN_NAME").notEqual("")))

最初の質問では、nullを除外しているため、カウントはゼロです。

2番目の置換の場合:以下のように使用します。

val options = Map("path" -> "...\\ex.csv", "header" -> "true")
val dfNull = spark.sqlContext.load("com.databricks.spark.csv", options)

scala> dfNull.show

+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|     null|
|  78065188| 498404626|      0|       0|         0| 2904922087|     null|
| 282487230|2520855981|      0|      28|         0| 3749735525|     null|
| 335269852|1641491432|      0|       2|         0| 1490350911|     null|
| 437050836|1238456614|      0|       2|         0|  991277599|     null|
| 447244169|2095085551|      0|      -1|         0| 1579858878|        a|
| 516353916|1076364848|      0|       3|         1| 3597645735|        b|
| 528218683|1151525474|      0|       1|         0| 3433080956|        c|
| 531967718|3632072502|      0|       1|         0| 3863085861|     null|
| 627948360|2823119321|      0|       0|         0| 4092665803|     null|
| 811791433|3513954032|      0|       2|         0|  415464198|     null|
| 830686203|  99027353|      0|       0|         0| 3549822604|     null|
|1008893291|1115453150|      0|       2|         0| 2245155244|     null|
|1239364869|2824096896|      0|       2|         1| 2579294650|        d|
|1287950172|1076364848|      0|       0|         0| 3597645735|     null|
|1345896548|2658555390|      0|       1|         0| 2025118823|     null|
|1354205322|2564682277|      0|       3|         0| 2563033185|     null|
|1408344828|1255629030|      0|      -1|         1|  804901063|     null|
|1452633375|1334001859|      0|       4|         0| 1488588320|     null|
|1625052108|3297535757|      0|       3|         0| 1972598895|     null|
+----------+----------+-------+--------+----------+-----------+---------+

dfNull.withColumn("friend_idTmp", when($"friend_id".isNull, "1").otherwise("0")).drop($"friend_id").withColumnRenamed("friend_idTmp", "friend_id").show

+----------+----------+-------+--------+----------+-----------+---------+
|   user_id|  event_id|invited|day_diff|interested|event_owner|friend_id|
+----------+----------+-------+--------+----------+-----------+---------+
|   4236494| 110357109|      0|      -1|         0|  937597069|        1|
|  78065188| 498404626|      0|       0|         0| 2904922087|        1|
| 282487230|2520855981|      0|      28|         0| 3749735525|        1|
| 335269852|1641491432|      0|       2|         0| 1490350911|        1|
| 437050836|1238456614|      0|       2|         0|  991277599|        1|
| 447244169|2095085551|      0|      -1|         0| 1579858878|        0|
| 516353916|1076364848|      0|       3|         1| 3597645735|        0|
| 528218683|1151525474|      0|       1|         0| 3433080956|        0|
| 531967718|3632072502|      0|       1|         0| 3863085861|        1|
| 627948360|2823119321|      0|       0|         0| 4092665803|        1|
| 811791433|3513954032|      0|       2|         0|  415464198|        1|
| 830686203|  99027353|      0|       0|         0| 3549822604|        1|
|1008893291|1115453150|      0|       2|         0| 2245155244|        1|
|1239364869|2824096896|      0|       2|         1| 2579294650|        0|
|1287950172|1076364848|      0|       0|         0| 3597645735|        1|
|1345896548|2658555390|      0|       1|         0| 2025118823|        1|
|1354205322|2564682277|      0|       3|         0| 2563033185|        1|
|1408344828|1255629030|      0|      -1|         1|  804901063|        1|
|1452633375|1334001859|      0|       4|         0| 1488588320|        1|
|1625052108|3297535757|      0|       3|         0| 1972598895|        1|
+----------+----------+-------+--------+----------+-----------+---------+
1
mputha

マイケルコパニオフのヒントから、以下の作品

df.where(df("id").isNotNull).show
1
Robin Wang

次のコードを使用して質問を解決します。できます。しかし、私たち全員が知っているように、私はそれを解決するために国のマイルを回って働きます。だから、そのためのショートカットはありますか?ありがとう

def filter_null(field : Any) : Int = field match {
    case null => 0
    case _    => 1
}

val test = train_event_join.join(
    user_friends_pair,
    train_event_join("user_id") === user_friends_pair("user_id") &&
    train_event_join("event_owner") === user_friends_pair("friend_id"),
    "left"
).select(
    train_event_join("user_id"),
    train_event_join("event_id"),
    train_event_join("invited"),
    train_event_join("day_diff"),
    train_event_join("interested"),
    train_event_join("event_owner"),
    user_friends_pair("friend_id")
).rdd.map{
    line => (
        line(0).toString.toLong,
        line(1).toString.toLong,
        line(2).toString.toLong,
        line(3).toString.toLong,
        line(4).toString.toLong,
        line(5).toString.toLong,
        filter_null(line(6))
        )
    }.toDF("user_id", "event_id", "invited", "day_diff", "interested", "event_owner", "creator_is_friend")
0
Steven Li