このコード を使用しました
私のエラーは:
Using Spark's default log4j profile: org/Apache/spark/log4j-defaults.properties
17/02/03 20:39:24 INFO SparkContext: Running Spark version 2.1.0
17/02/03 20:39:25 WARN NativeCodeLoader: Unable to load native-hadoop
library for your platform... using builtin-Java classes where applicable
17/02/03 20:39:25 WARN SparkConf: Detected deprecated memory fraction
settings: [spark.storage.memoryFraction]. As of Spark 1.6, execution and
storage memory management are unified. All memory fractions used in the old
model are now deprecated and no longer read. If you wish to use the old
memory management, you may explicitly enable `spark.memory.useLegacyMode`
(not recommended).
17/02/03 20:39:25 ERROR SparkContext: Error initializing SparkContext.
org.Apache.spark.SparkException: A master URL must be set in your
configuration
at org.Apache.spark.SparkContext.<init>(SparkContext.scala:379)
at PCA$.main(PCA.scala:26)
at PCA.main(PCA.scala)
at Sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at Sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.Java:62)
at Sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.Java:43)
at Java.lang.reflect.Method.invoke(Method.Java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.Java:144)
17/02/03 20:39:25 INFO SparkContext: Successfully stopped SparkContext
Exception in thread "main" org.Apache.spark.SparkException: A master URL must be set in your configuration
at org.Apache.spark.SparkContext.<init>(SparkContext.scala:379)
at PCA$.main(PCA.scala:26)
at PCA.main(PCA.scala)
at Sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at
Sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.Java:62)
at
Sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.Java:43)
at Java.lang.reflect.Method.invoke(Method.Java:498)
at com.intellij.rt.execution.application.AppMain.main(AppMain.Java:144)
Process finished with exit code 1
spark stand aloneを実行している場合
val conf = new SparkConf().setMaster("spark://master") //missing
また、ジョブの送信中にパラメーターを渡すことができます
spark-submit --master spark://master
spark localを実行している場合
val conf = new SparkConf().setMaster("local[2]") //missing
ジョブの送信中にパラメーターを渡すことができます
spark-submit --master local
糸でspark=を実行している場合
spark-submit --master yarn
エラーメッセージは非常に明確で、SparkContext
またはspark-submit
を介してSparkマスターノードのアドレスを提供する必要があります。
val conf =
new SparkConf()
.setAppName("ClusterScore")
.setMaster("spark://172.1.1.1:7077") // <--- This is what's missing
.set("spark.storage.memoryFraction", "1")
val sc = new SparkContext(conf)
SparkConf configuration = new SparkConf()
.setAppName("Your Application Name")
.setMaster("local");
val sc = new SparkContext(conf);
それが動作します...