最初に(d <5)および次の条件(col1の値がcol3の対応する値と等しい場合、col2の値はcol4の対応する値と等しくない)に従ってデータフレームをフィルター処理します。
元のデータフレームDF
が次の場合:
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| C| xxx| D| vv| 10|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| E| xxx| F| vvv| 6|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xxx| 4|
| G| xxx| G| xx| 4|
| G| xxx| G| xxx| 12|
| B|xxxx| B| xx| 13|
+----+----+----+----+---+
目的のデータフレームは次のとおりです。
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+
私が試したコードは期待通りに機能しませんでした:
cols=[('A','xx','D','vv',4),('C','xxx','D','vv',10),('A','x','A','xx',3),('E','xxx','B','vv',3),('E','xxx','F','vvv',6),('F','xxxx','F','vvv',4),('G','xxx','G','xxx',4),('G','xxx','G','xx',4),('G','xxx','G','xxx',12),('B','xxxx','B','xx',13)]
df=spark.createDataFrame(cols,['col1','col2','col3','col4','d'])
df.filter((df.d<5)& (df.col2!=df.col4) & (df.col1==df.col3)).show()
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| x| A| xx| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+
望ましい結果を得るにはどうすればよいですか?
論理条件が間違っています。 IIUC、あなたが欲しいのは:
import pyspark.sql.functions as f
df.filter((f.col('d')<5))\
.filter(
((f.col('col1') != f.col('col3')) |
(f.col('col2') != f.col('col4')) & (f.col('col1') == f.col('col3')))
)\
.show()
filter()
ステップを読みやすくするために2つの呼び出しに分割しましたが、1行で同等に実行できます。
出力:
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+
以下のように書くこともできます(pyspark.sql.functions
なし):
df.filter('d<5 and (col1 <> col3 or (col1 = col3 and col2 <> col4))').show()
結果:
+----+----+----+----+---+
|col1|col2|col3|col4| d|
+----+----+----+----+---+
| A| xx| D| vv| 4|
| A| x| A| xx| 3|
| E| xxx| B| vv| 3|
| F|xxxx| F| vvv| 4|
| G| xxx| G| xx| 4|
+----+----+----+----+---+