web-dev-qa-db-ja.com

可変長文字列のより良い類似度ランキングアルゴリズム

私は、通常提案されているもの(レベンシュタイン距離、soundexなど)よりも可変長文字列でより良い結果をもたらす文字列類似性アルゴリズムを探しています。

例えば、

与えられた文字列A:「ロバート」、

次に、ストリングB: "Amy Robertson"

より良いマッチになるだろう

ストリングC:「リチャード」

また、このアルゴリズムは言語に依存しないことが望ましいです(英語以外の言語でも機能します)。

146
marzagao

CatalysoftのSimon Whiteは、隣接する文字ペアを比較する非常に賢いアルゴリズムについての記事を書きました。

http://www.catalysoft.com/articles/StrikeAMatch.html

SimonにはJavaバージョンのアルゴリズムがあり、その下にPL/Rubyバージョンを書きました(関連するフォーラムエントリで行われたプレーンRubyバージョンMark Wong-VanHarenによるコメント)、PostgreSQLクエリで使用できるようにします:

CREATE FUNCTION string_similarity(str1 varchar, str2 varchar)
RETURNS float8 AS '

str1.downcase! 
pairs1 = (0..str1.length-2).collect {|i| str1[i,2]}.reject {
  |pair| pair.include? " "}
str2.downcase! 
pairs2 = (0..str2.length-2).collect {|i| str2[i,2]}.reject {
  |pair| pair.include? " "}
union = pairs1.size + pairs2.size 
intersection = 0 
pairs1.each do |p1| 
  0.upto(pairs2.size-1) do |i| 
    if p1 == pairs2[i] 
      intersection += 1 
      pairs2.slice!(i) 
      break 
    end 
  end 
end 
(2.0 * intersection) / union

' LANGUAGE 'plruby';

チャームのように機能します!

150
marzagao

marzagaoの答え は素晴らしい。私はそれをC#に変換したので、ここに投稿したいと思いました:

ペーストビンリンク

/// <summary>
/// This class implements string comparison algorithm
/// based on character pair similarity
/// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
/// </summary>
public class SimilarityTool
{
    /// <summary>
    /// Compares the two strings based on letter pair matches
    /// </summary>
    /// <param name="str1"></param>
    /// <param name="str2"></param>
    /// <returns>The percentage match from 0.0 to 1.0 where 1.0 is 100%</returns>
    public double CompareStrings(string str1, string str2)
    {
        List<string> pairs1 = WordLetterPairs(str1.ToUpper());
        List<string> pairs2 = WordLetterPairs(str2.ToUpper());

        int intersection = 0;
        int union = pairs1.Count + pairs2.Count;

        for (int i = 0; i < pairs1.Count; i++)
        {
            for (int j = 0; j < pairs2.Count; j++)
            {
                if (pairs1[i] == pairs2[j])
                {
                    intersection++;
                    pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success

                    break;
                }
            }
        }

        return (2.0 * intersection) / union;
    }

    /// <summary>
    /// Gets all letter pairs for each
    /// individual Word in the string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private List<string> WordLetterPairs(string str)
    {
        List<string> AllPairs = new List<string>();

        // Tokenize the string and put the tokens/words into an array
        string[] Words = Regex.Split(str, @"\s");

        // For each Word
        for (int w = 0; w < Words.Length; w++)
        {
            if (!string.IsNullOrEmpty(Words[w]))
            {
                // Find the pairs of characters
                String[] PairsInWord = LetterPairs(Words[w]);

                for (int p = 0; p < PairsInWord.Length; p++)
                {
                    AllPairs.Add(PairsInWord[p]);
                }
            }
        }

        return AllPairs;
    }

    /// <summary>
    /// Generates an array containing every 
    /// two consecutive letters in the input string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private string[] LetterPairs(string str)
    {
        int numPairs = str.Length - 1;

        string[] pairs = new string[numPairs];

        for (int i = 0; i < numPairs; i++)
        {
            pairs[i] = str.Substring(i, 2);
        }

        return pairs;
    }
}
75
Michael La Voie

marzagao's answerの別のバージョンがあります。これはPythonで書かれています:

def get_bigrams(string):
    """
    Take a string and return a list of bigrams.
    """
    s = string.lower()
    return [s[i:i+2] for i in list(range(len(s) - 1))]

def string_similarity(str1, str2):
    """
    Perform bigram comparison between two strings
    and return a percentage match in decimal form.
    """
    pairs1 = get_bigrams(str1)
    pairs2 = get_bigrams(str2)
    union  = len(pairs1) + len(pairs2)
    hit_count = 0
    for x in pairs1:
        for y in pairs2:
            if x == y:
                hit_count += 1
                break
    return (2.0 * hit_count) / union

if __== "__main__":
    """
    Run a test using the example taken from:
    http://www.catalysoft.com/articles/StrikeAMatch.html
    """
    w1 = 'Healed'
    words = ['Heard', 'Healthy', 'Help', 'Herded', 'Sealed', 'Sold']

    for w2 in words:
        print('Healed --- ' + w2)
        print(string_similarity(w1, w2))
        print()
37
John Rutledge

John Rutledge's answerの短縮版:

def get_bigrams(string):
    '''
    Takes a string and returns a list of bigrams
    '''
    s = string.lower()
    return {s[i:i+2] for i in xrange(len(s) - 1)}

def string_similarity(str1, str2):
    '''
    Perform bigram comparison between two strings
    and return a percentage match in decimal form
    '''
    pairs1 = get_bigrams(str1)
    pairs2 = get_bigrams(str2)
    return (2.0 * len(pairs1 & pairs2)) / (len(pairs1) + len(pairs2))
17
quantum

ここに私のPHP推奨されるStrikeAMatchアルゴリズムの実装、Simon Whiteによる。利点は(リンクで言うように):

  • 語彙の類似性の真の反映-わずかな違いのある文字列は類似していると認識されるべきです。特に、重要な部分文字列の重複は、文字列間の類似性が高いことを示す必要があります。

  • 単語の順序の変更に対する堅牢性-同じ単語を含むが順序が異なる2つの文字列は、類似していると認識される必要があります。一方、1つの文字列が他の文字列に含まれる文字のランダムなアナグラムである場合、(通常)異なる文字列として認識される必要があります。

  • Language Independence-アルゴリズムは英語だけでなく、多くの異なる言語で動作するはずです。

<?php
/**
 * LetterPairSimilarity algorithm implementation in PHP
 * @author Igal Alkon
 * @link http://www.catalysoft.com/articles/StrikeAMatch.html
 */
class LetterPairSimilarity
{
    /**
     * @param $str
     * @return mixed
     */
    private function wordLetterPairs($str)
    {
        $allPairs = array();

        // Tokenize the string and put the tokens/words into an array

        $words = explode(' ', $str);

        // For each Word
        for ($w = 0; $w < count($words); $w++)
        {
            // Find the pairs of characters
            $pairsInWord = $this->letterPairs($words[$w]);

            for ($p = 0; $p < count($pairsInWord); $p++)
            {
                $allPairs[] = $pairsInWord[$p];
            }
        }

        return $allPairs;
    }

    /**
     * @param $str
     * @return array
     */
    private function letterPairs($str)
    {
        $numPairs = mb_strlen($str)-1;
        $pairs = array();

        for ($i = 0; $i < $numPairs; $i++)
        {
            $pairs[$i] = mb_substr($str,$i,2);
        }

        return $pairs;
    }

    /**
     * @param $str1
     * @param $str2
     * @return float
     */
    public function compareStrings($str1, $str2)
    {
        $pairs1 = $this->wordLetterPairs(strtoupper($str1));
        $pairs2 = $this->wordLetterPairs(strtoupper($str2));

        $intersection = 0;

        $union = count($pairs1) + count($pairs2);

        for ($i=0; $i < count($pairs1); $i++)
        {
            $pair1 = $pairs1[$i];

            $pairs2 = array_values($pairs2);
            for($j = 0; $j < count($pairs2); $j++)
            {
                $pair2 = $pairs2[$j];
                if ($pair1 === $pair2)
                {
                    $intersection++;
                    unset($pairs2[$j]);
                    break;
                }
            }
        }

        return (2.0*$intersection)/$union;
    }
}
17
Igal Alkon

この議論は本当に役に立ちました、ありがとう。 Excelで使用するためにアルゴリズムをVBAに変換し、いくつかのバージョンのワークシート関数を作成しました。 strSimLookupバージョンは、文字列、配列インデックス、または類似性メトリックとして最後に一致したものを返します。

この実装は、Simon WhiteのWebサイトのAmazonの例にリストされているものと同じ結果を生成しますが、低スコアの一致に関するいくつかの小さな例外があります。違いがどこに忍び込んでいるかはわかりませんが、VBAのSplit関数かもしれませんが、目的のためにうまく機能しているので調査していません。

'Implements functions to rate how similar two strings are on
'a scale of 0.0 (completely dissimilar) to 1.0 (exactly similar)
'Source:   http://www.catalysoft.com/articles/StrikeAMatch.html
'Author: Bob Chatham, bob.chatham at gmail.com
'9/12/2010

Option Explicit

Public Function stringSimilarity(str1 As String, str2 As String) As Variant
'Simple version of the algorithm that computes the similiarity metric
'between two strings.
'NOTE: This verision is not efficient to use if you're comparing one string
'with a range of other values as it will needlessly calculate the pairs for the
'first string over an over again; use the array-optimized version for this case.

    Dim sPairs1 As Collection
    Dim sPairs2 As Collection

    Set sPairs1 = New Collection
    Set sPairs2 = New Collection

    WordLetterPairs str1, sPairs1
    WordLetterPairs str2, sPairs2

    stringSimilarity = SimilarityMetric(sPairs1, sPairs2)

    Set sPairs1 = Nothing
    Set sPairs2 = Nothing

End Function

Public Function strSimA(str1 As Variant, rRng As Range) As Variant
'Return an array of string similarity indexes for str1 vs every string in input range rRng
    Dim sPairs1 As Collection
    Dim sPairs2 As Collection
    Dim arrOut As Variant
    Dim l As Long, j As Long

    Set sPairs1 = New Collection

    WordLetterPairs CStr(str1), sPairs1

    l = rRng.Count
    ReDim arrOut(1 To l)
    For j = 1 To l
        Set sPairs2 = New Collection
        WordLetterPairs CStr(rRng(j)), sPairs2
        arrOut(j) = SimilarityMetric(sPairs1, sPairs2)
        Set sPairs2 = Nothing
    Next j

    strSimA = Application.Transpose(arrOut)

End Function

Public Function strSimLookup(str1 As Variant, rRng As Range, Optional returnType) As Variant
'Return either the best match or the index of the best match
'depending on returnTYype parameter) between str1 and strings in rRng)
' returnType = 0 or omitted: returns the best matching string
' returnType = 1           : returns the index of the best matching string
' returnType = 2           : returns the similarity metric

    Dim sPairs1 As Collection
    Dim sPairs2 As Collection
    Dim metric, bestMetric As Double
    Dim i, iBest As Long
    Const RETURN_STRING As Integer = 0
    Const RETURN_INDEX As Integer = 1
    Const RETURN_METRIC As Integer = 2

    If IsMissing(returnType) Then returnType = RETURN_STRING

    Set sPairs1 = New Collection

    WordLetterPairs CStr(str1), sPairs1

    bestMetric = -1
    iBest = -1

    For i = 1 To rRng.Count
        Set sPairs2 = New Collection
        WordLetterPairs CStr(rRng(i)), sPairs2
        metric = SimilarityMetric(sPairs1, sPairs2)
        If metric > bestMetric Then
            bestMetric = metric
            iBest = i
        End If
        Set sPairs2 = Nothing
    Next i

    If iBest = -1 Then
        strSimLookup = CVErr(xlErrValue)
        Exit Function
    End If

    Select Case returnType
    Case RETURN_STRING
        strSimLookup = CStr(rRng(iBest))
    Case RETURN_INDEX
        strSimLookup = iBest
    Case Else
        strSimLookup = bestMetric
    End Select

End Function

Public Function strSim(str1 As String, str2 As String) As Variant
    Dim ilen, iLen1, ilen2 As Integer

    iLen1 = Len(str1)
    ilen2 = Len(str2)

    If iLen1 >= ilen2 Then ilen = ilen2 Else ilen = iLen1

    strSim = stringSimilarity(Left(str1, ilen), Left(str2, ilen))

End Function

Sub WordLetterPairs(str As String, pairColl As Collection)
'Tokenize str into words, then add all letter pairs to pairColl

    Dim Words() As String
    Dim Word, nPairs, pair As Integer

    Words = Split(str)

    If UBound(Words) < 0 Then
        Set pairColl = Nothing
        Exit Sub
    End If

    For Word = 0 To UBound(Words)
        nPairs = Len(Words(Word)) - 1
        If nPairs > 0 Then
            For pair = 1 To nPairs
                pairColl.Add Mid(Words(Word), pair, 2)
            Next pair
        End If
    Next Word

End Sub

Private Function SimilarityMetric(sPairs1 As Collection, sPairs2 As Collection) As Variant
'Helper function to calculate similarity metric given two collections of letter pairs.
'This function is designed to allow the pair collections to be set up separately as needed.
'NOTE: sPairs2 collection will be altered as pairs are removed; copy the collection
'if this is not the desired behavior.
'Also assumes that collections will be deallocated somewhere else

    Dim Intersect As Double
    Dim Union As Double
    Dim i, j As Long

    If sPairs1.Count = 0 Or sPairs2.Count = 0 Then
        SimilarityMetric = CVErr(xlErrNA)
        Exit Function
    End If

    Union = sPairs1.Count + sPairs2.Count
    Intersect = 0

    For i = 1 To sPairs1.Count
        For j = 1 To sPairs2.Count
            If StrComp(sPairs1(i), sPairs2(j)) = 0 Then
                Intersect = Intersect + 1
                sPairs2.Remove j
                Exit For
            End If
        Next j
    Next i

    SimilarityMetric = (2 * Intersect) / Union

End Function
13
bchatham

申し訳ありませんが、答えは著者によって考案されたものではありません。これは、Digital Equipment Corporationが最初に発表したよく知られたアルゴリズムで、多くの場合、シングリングと呼ばれます。

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-015.pdf

12
user4256874

より高速なPHPアルゴリズムのバージョン:

/**
 *
 * @param $str
 * @return mixed
 */
private static function wordLetterPairs ($str)
{
    $allPairs = array();

    // Tokenize the string and put the tokens/words into an array

    $words = explode(' ', $str);

    // For each Word
    for ($w = 0; $w < count($words); $w ++) {
        // Find the pairs of characters
        $pairsInWord = self::letterPairs($words[$w]);

        for ($p = 0; $p < count($pairsInWord); $p ++) {
            $allPairs[$pairsInWord[$p]] = $pairsInWord[$p];
        }
    }

    return array_values($allPairs);
}

/**
 *
 * @param $str
 * @return array
 */
private static function letterPairs ($str)
{
    $numPairs = mb_strlen($str) - 1;
    $pairs = array();

    for ($i = 0; $i < $numPairs; $i ++) {
        $pairs[$i] = mb_substr($str, $i, 2);
    }

    return $pairs;
}

/**
 *
 * @param $str1
 * @param $str2
 * @return float
 */
public static function compareStrings ($str1, $str2)
{
    $pairs1 = self::wordLetterPairs(mb_strtolower($str1));
    $pairs2 = self::wordLetterPairs(mb_strtolower($str2));


    $union = count($pairs1) + count($pairs2);

    $intersection = count(array_intersect($pairs1, $pairs2));

    return (2.0 * $intersection) / $union;
}

私が持っていたデータ(約2300の比較)については、 Igal Alkon ソリューションで0.58秒、私のソリューションでは0.35秒でした。

9
Andy

Simon WhiteのアルゴリズムをPL/pgSQLに翻訳しました。これが私の貢献です。

<!-- language: lang-sql -->

create or replace function spt1.letterpairs(in p_str varchar) 
returns varchar  as 
$$
declare

    v_numpairs integer := length(p_str)-1;
    v_pairs varchar[];

begin

    for i in 1 .. v_numpairs loop
        v_pairs[i] := substr(p_str, i, 2);
    end loop;

    return v_pairs;

end;
$$ language 'plpgsql';

--===================================================================

create or replace function spt1.wordletterpairs(in p_str varchar) 
returns varchar as
$$
declare
    v_allpairs varchar[];
    v_words varchar[];
    v_pairsinword varchar[];
begin
    v_words := regexp_split_to_array(p_str, '[[:space:]]');

    for i in 1 .. array_length(v_words, 1) loop
        v_pairsinword := spt1.letterpairs(v_words[i]);

        if v_pairsinword is not null then
            for j in 1 .. array_length(v_pairsinword, 1) loop
                v_allpairs := v_allpairs || v_pairsinword[j];
            end loop;
        end if;

    end loop;


    return v_allpairs;
end;
$$ language 'plpgsql';

--===================================================================

create or replace function spt1.arrayintersect(ANYARRAY, ANYARRAY)
returns anyarray as 
$$
    select array(select unnest($1) intersect select unnest($2))
$$ language 'sql';

--===================================================================

create or replace function spt1.comparestrings(in p_str1 varchar, in p_str2 varchar)
returns float as
$$
declare
    v_pairs1 varchar[];
    v_pairs2 varchar[];
    v_intersection integer;
    v_union integer;
begin
    v_pairs1 := wordletterpairs(upper(p_str1));
    v_pairs2 := wordletterpairs(upper(p_str2));
    v_union := array_length(v_pairs1, 1) + array_length(v_pairs2, 1); 

    v_intersection := array_length(arrayintersect(v_pairs1, v_pairs2), 1);

    return (2.0 * v_intersection / v_union);
end;
$$ language 'plpgsql'; 
9
fabiolimace

美しいScalaのバージョン:

  def pairDistance(s1: String, s2: String): Double = {

    def strToPairs(s: String, acc: List[String]): List[String] = {
      if (s.size < 2) acc
      else strToPairs(s.drop(1),
        if (s.take(2).contains(" ")) acc else acc ::: List(s.take(2)))
    }

    val lst1 = strToPairs(s1.toUpperCase, List())
    val lst2 = strToPairs(s2.toUpperCase, List())

    (2.0 * lst2.intersect(lst1).size) / (lst1.size + lst2.size)

  }
9
Ignobilis

String Similarity Metrics には、文字列比較で使用されるさまざまなメトリックの概要が含まれています( Wikipedia にも概要があります)。これらのメトリックの多くは、ライブラリに実装されています simmetrics

特定の概要に含まれていないメトリックのさらに別の例は、たとえば 圧縮距離コルモゴロフの複雑さ に近づけようとする)です。これは、あなたが提示したもの。

Natural Language Processing のはるかに幅広い主題を検討することもできます。 これら Rパッケージは、すぐに使い始めることができます(または、少なくともいくつかのアイデアを提供します)。

最後の編集-SOでこのテーマに関する他の質問を検索してください。関連する質問がかなりあります。

8
Anonymous

Rバージョンは次のとおりです。

get_bigrams <- function(str)
{
  lstr = tolower(str)
  bigramlst = list()
  for(i in 1:(nchar(str)-1))
  {
    bigramlst[[i]] = substr(str, i, i+1)
  }
  return(bigramlst)
}

str_similarity <- function(str1, str2)
{
   pairs1 = get_bigrams(str1)
   pairs2 = get_bigrams(str2)
   unionlen  = length(pairs1) + length(pairs2)
   hit_count = 0
   for(x in 1:length(pairs1)){
        for(y in 1:length(pairs2)){
            if (pairs1[[x]] == pairs2[[y]])
                hit_count = hit_count + 1
        }
   }
   return ((2.0 * hit_count) / unionlen)
}
6
Rainer

marzagao's answer C99での投稿 これら アルゴリズムに触発

double dice_match(const char *string1, const char *string2) {

    //check fast cases
    if (((string1 != NULL) && (string1[0] == '\0')) || 
        ((string2 != NULL) && (string2[0] == '\0'))) {
        return 0;
    }
    if (string1 == string2) {
        return 1;
    }

    size_t strlen1 = strlen(string1);
    size_t strlen2 = strlen(string2);
    if (strlen1 < 2 || strlen2 < 2) {
        return 0;
    }

    size_t length1 = strlen1 - 1;
    size_t length2 = strlen2 - 1;

    double matches = 0;
    int i = 0, j = 0;

    //get bigrams and compare
    while (i < length1 && j < length2) {
        char a[3] = {string1[i], string1[i + 1], '\0'};
        char b[3] = {string2[j], string2[j + 1], '\0'};
        int cmp = strcmpi(a, b);
        if (cmp == 0) {
            matches += 2;
        }
        i++;
        j++;
    }

    return matches / (length1 + length2);
}

元の記事 に基づくいくつかのテスト:

#include <stdio.h>

void article_test1() {
    char *string1 = "FRANCE";
    char *string2 = "FRENCH";
    printf("====%s====\n", __func__);
    printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);
}


void article_test2() {
    printf("====%s====\n", __func__);
    char *string = "Healed";
    char *ss[] = {"Heard", "Healthy", "Help",
                  "Herded", "Sealed", "Sold"};
    int correct[] = {44, 55, 25, 40, 80, 0};
    for (int i = 0; i < 6; ++i) {
        printf("%2.f%% == %d%%\n", dice_match(string, ss[i]) * 100, correct[i]);
    }
}

void multicase_test() {
    char *string1 = "FRaNcE";
    char *string2 = "fREnCh";
    printf("====%s====\n", __func__);
    printf("%2.f%% == 40%%\n", dice_match(string1, string2) * 100);

}

void gg_test() {
    char *string1 = "GG";
    char *string2 = "GGGGG";
    printf("====%s====\n", __func__);
    printf("%2.f%% != 100%%\n", dice_match(string1, string2) * 100);
}


int main() {
    article_test1();
    article_test2();
    multicase_test();
    gg_test();

    return 0;
}
6
scripts

私のJavaScript実装は、文字列または文字列の配列と、オプションのフロア(デフォルトのフロアは0.5)を取ります。文字列を渡すと、文字列の類似性スコアがフロア以上かどうかに応じて、trueまたはfalseを返します。文字列の配列を渡すと、類似度スコアがフロア以上である文字列の配列をスコアでソートして返します。

例:

'Healed'.fuzzy('Sealed');      // returns true
'Healed'.fuzzy('Help');        // returns false
'Healed'.fuzzy('Help', 0.25);  // returns true

'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy']);
// returns ["Sealed", "Healthy"]

'Healed'.fuzzy(['Sold', 'Herded', 'Heard', 'Help', 'Sealed', 'Healthy'], 0);
// returns ["Sealed", "Healthy", "Heard", "Herded", "Help", "Sold"]

ここにあります:

(function(){
  var default_floor = 0.5;

  function pairs(str){
    var pairs = []
      , length = str.length - 1
      , pair;
    str = str.toLowerCase();
    for(var i = 0; i < length; i++){
      pair = str.substr(i, 2);
      if(!/\s/.test(pair)){
        pairs.Push(pair);
      }
    }
    return pairs;
  }

  function similarity(pairs1, pairs2){
    var union = pairs1.length + pairs2.length
      , hits = 0;

    for(var i = 0; i < pairs1.length; i++){
      for(var j = 0; j < pairs1.length; j++){
        if(pairs1[i] == pairs2[j]){
          pairs2.splice(j--, 1);
          hits++;
          break;
        }
      }
    }
    return 2*hits/union || 0;
  }

  String.prototype.fuzzy = function(strings, floor){
    var str1 = this
      , pairs1 = pairs(this);

    floor = typeof floor == 'number' ? floor : default_floor;

    if(typeof(strings) == 'string'){
      return str1.length > 1 && strings.length > 1 && similarity(pairs1, pairs(strings)) >= floor || str1.toLowerCase() == strings.toLowerCase();
    }else if(strings instanceof Array){
      var scores = {};

      strings.map(function(str2){
        scores[str2] = str1.length > 1 ? similarity(pairs1, pairs(str2)) : 1*(str1.toLowerCase() == str2.toLowerCase());
      });

      return strings.filter(function(str){
        return scores[str] >= floor;
      }).sort(function(a, b){
        return scores[b] - scores[a];
      });
    }
  };
})();

そして、ここにあなたの便宜のために縮小版があります:

(function(){function g(a){var b=[],e=a.length-1,d;a=a.toLowerCase();for(var c=0;c<e;c++)d=a.substr(c,2),/\s/.test(d)||b.Push(d);return b}function h(a,b){for(var e=a.length+b.length,d=0,c=0;c<a.length;c++)for(var f=0;f<a.length;f++)if(a[c]==b[f]){b.splice(f--,1);d++;break}return 2*d/e||0}String.prototype.fuzzy=function(a,b){var e=this,d=g(this);b="number"==typeof b?b:0.5;if("string"==typeof a)return 1<e.length&&1<a.length&&h(d,g(a))>=b||e.toLowerCase()==a.toLowerCase();if(a instanceof Array){var c={};a.map(function(a){c[a]=1<e.length?h(d,g(a)):1*(e.toLowerCase()==a.toLowerCase())});return a.filter(function(a){return c[a]>=b}).sort(function(a,b){return c[b]-c[a]})}}})();
5
gruppler

Michael La Voieの素晴らしいC#バージョンに基づいて、それを拡張メソッドにするというリクエストに応じて、私が思いついたものを以下に示します。この方法で行う主な利点は、一致率で汎用リストをソートできることです。たとえば、オブジェクトに「City」という名前の文字列フィールドがあるとします。ユーザーが「チェスター」を検索し、一致の降順で結果を返します。たとえば、チェスターの文字通りの一致をロチェスターの前に表示したいとします。これを行うには、オブジェクトに2つの新しいプロパティを追加します。

    public string SearchText { get; set; }
    public double PercentMatch
    {
        get
        {
            return City.ToUpper().PercentMatchTo(this.SearchText.ToUpper());
        }
    }

次に、各オブジェクトで、ユーザーが検索したものにSearchTextを設定します。次に、次のような方法で簡単にソートできます。

    zipcodes = zipcodes.OrderByDescending(x => x.PercentMatch);

これを拡張メソッドにするためのわずかな変更を次に示します。

    /// <summary>
    /// This class implements string comparison algorithm
    /// based on character pair similarity
    /// Source: http://www.catalysoft.com/articles/StrikeAMatch.html
    /// </summary>
    public static double PercentMatchTo(this string str1, string str2)
    {
        List<string> pairs1 = WordLetterPairs(str1.ToUpper());
        List<string> pairs2 = WordLetterPairs(str2.ToUpper());

        int intersection = 0;
        int union = pairs1.Count + pairs2.Count;

        for (int i = 0; i < pairs1.Count; i++)
        {
            for (int j = 0; j < pairs2.Count; j++)
            {
                if (pairs1[i] == pairs2[j])
                {
                    intersection++;
                    pairs2.RemoveAt(j);//Must remove the match to prevent "GGGG" from appearing to match "GG" with 100% success

                    break;
                }
            }
        }

        return (2.0 * intersection) / union;
    }

    /// <summary>
    /// Gets all letter pairs for each
    /// individual Word in the string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private static List<string> WordLetterPairs(string str)
    {
        List<string> AllPairs = new List<string>();

        // Tokenize the string and put the tokens/words into an array
        string[] Words = Regex.Split(str, @"\s");

        // For each Word
        for (int w = 0; w < Words.Length; w++)
        {
            if (!string.IsNullOrEmpty(Words[w]))
            {
                // Find the pairs of characters
                String[] PairsInWord = LetterPairs(Words[w]);

                for (int p = 0; p < PairsInWord.Length; p++)
                {
                    AllPairs.Add(PairsInWord[p]);
                }
            }
        }

        return AllPairs;
    }

    /// <summary>
    /// Generates an array containing every 
    /// two consecutive letters in the input string
    /// </summary>
    /// <param name="str"></param>
    /// <returns></returns>
    private static  string[] LetterPairs(string str)
    {
        int numPairs = str.Length - 1;

        string[] pairs = new string[numPairs];

        for (int i = 0; i < numPairs; i++)
        {
            pairs[i] = str.Substring(i, 2);
        }

        return pairs;
    }
5
Frank Rundatz

Haskellバージョン— Haskellをあまり行っていないので、気軽に編集を提案してください。

import Data.Char
import Data.List

-- Convert a string into words, then get the pairs of words from that phrase
wordLetterPairs :: String -> [String]
wordLetterPairs s1 = concat $ map pairs $ words s1

-- Converts a String into a list of letter pairs.
pairs :: String -> [String]
pairs [] = []
pairs (x:[]) = []
pairs (x:ys) = [x, head ys]:(pairs ys)

-- Calculates the match rating for two strings
matchRating :: String -> String -> Double
matchRating s1 s2 = (numberOfMatches * 2) / totalLength
  where pairsS1 = wordLetterPairs $ map toLower s1
        pairsS2 = wordLetterPairs $ map toLower s2
        numberOfMatches = fromIntegral $ length $ pairsS1 `intersect` pairsS2
        totalLength = fromIntegral $ length pairsS1 + length pairsS2
2
matthewpalmer

Clojure:

(require '[clojure.set :refer [intersection]])

(defn bigrams [s]
  (->> (split s #"\s+")
       (mapcat #(partition 2 1 %))
       (set)))

(defn string-similarity [a b]
  (let [a-pairs (bigrams a)
        b-pairs (bigrams b)
        total-count (+ (count a-pairs) (count b-pairs))
        match-count (count (intersection a-pairs b-pairs))
        similarity (/ (* 2 match-count) total-count)]
    similarity))
2
Shaun Lebron

ダイス係数アルゴリズム(Simon White/marzagaoの答え)は、amatch gemのpair_distance_similarメソッドのRubyで実装されています

https://github.com/flori/amatch

このgemには、いくつかの近似マッチングおよび文字列比較アルゴリズムの実装も含まれています:レーベンシュタイン編集距離、売り手編集距離、ハミング距離、最長共通部分列長、最長共通部分文字列長、ペア距離メトリック、Jaro-Winklerメトリック。

2
s01ipsist

@marzagaoの答えが示すアルゴリズムの純粋なRuby実装を探していました。残念ながら、@ marzagaoで示されるリンクは壊れています。 @ s01ipsistの回答で、彼はRuby gem amatch を示しましたが、実装は純粋なRubyではありません。そこで、少し検索して、純粋なRuby実装を持つgem fuzzy_match を見つけました(このgemはamatchを使用しています) at here これが私のような人に役立つことを願っています。

レーベンシュタインの距離を最初の弦の長さで割ったもの(または両方の弦の最小/最大/平均長さで割ったもの)はどうですか?これは今のところうまくいきました。

1
tehvan

ちょっとみんな私はこれをjavascriptで試してみましたが、私はそれが初めてです、誰もそれを行うより速い方法を知っていますか?

function get_bigrams(string) {
    // Takes a string and returns a list of bigrams
    var s = string.toLowerCase();
    var v = new Array(s.length-1);
    for (i = 0; i< v.length; i++){
        v[i] =s.slice(i,i+2);
    }
    return v;
}

function string_similarity(str1, str2){
    /*
    Perform bigram comparison between two strings
    and return a percentage match in decimal form
    */
    var pairs1 = get_bigrams(str1);
    var pairs2 = get_bigrams(str2);
    var union = pairs1.length + pairs2.length;
    var hit_count = 0;
    for (x in pairs1){
        for (y in pairs2){
            if (pairs1[x] == pairs2[y]){
                hit_count++;
            }
        }
    }
    return ((2.0 * hit_count) / union);
}


var w1 = 'Healed';
var Word =['Heard','Healthy','Help','Herded','Sealed','Sold']
for (w2 in Word){
    console.log('Healed --- ' + Word[w2])
    console.log(string_similarity(w1,Word[w2]));
}
1
user779420

Sørensen–Diceインデックス(marzagaoの答え)に基づく類似性の別のバージョンを次に示します。これはC++ 11で記述されています。

/*
 * Similarity based in Sørensen–Dice index.
 *
 * Returns the Similarity between _str1 and _str2.
 */
double similarity_sorensen_dice(const std::string& _str1, const std::string& _str2) {
    // Base case: if some string is empty.
    if (_str1.empty() || _str2.empty()) {
        return 1.0;
    }

    auto str1 = upper_string(_str1);
    auto str2 = upper_string(_str2);

    // Base case: if the strings are equals.
    if (str1 == str2) {
        return 0.0;
    }

    // Base case: if some string does not have bigrams.
    if (str1.size() < 2 || str2.size() < 2) {
        return 1.0;
    }

    // Extract bigrams from str1
    auto num_pairs1 = str1.size() - 1;
    std::unordered_set<std::string> str1_bigrams;
    str1_bigrams.reserve(num_pairs1);
    for (unsigned i = 0; i < num_pairs1; ++i) {
        str1_bigrams.insert(str1.substr(i, 2));
    }

    // Extract bigrams from str2
    auto num_pairs2 = str2.size() - 1;
    std::unordered_set<std::string> str2_bigrams;
    str2_bigrams.reserve(num_pairs2);
    for (unsigned int i = 0; i < num_pairs2; ++i) {
        str2_bigrams.insert(str2.substr(i, 2));
    }

    // Find the intersection between the two sets.
    int intersection = 0;
    if (str1_bigrams.size() < str2_bigrams.size()) {
        const auto it_e = str2_bigrams.end();
        for (const auto& bigram : str1_bigrams) {
            intersection += str2_bigrams.find(bigram) != it_e;
        }
    } else {
        const auto it_e = str1_bigrams.end();
        for (const auto& bigram : str2_bigrams) {
            intersection += str1_bigrams.find(bigram) != it_e;
        }
    }

    // Returns similarity coefficient.
    return (2.0 * intersection) / (num_pairs1 + num_pairs2);
}
1
chema989