これ に似た質問があります。
リソースが限られているため、トリプレットネットワークのトレーニングに使用されるディープモデル(VGG-16)を使用しているため、サイズ1のトレーニング例の128バッチの勾配を累積し、エラーを伝播して重みを更新します。
これをどのように行うのか私にはわかりません。私はテンソルフローで作業しますが、任意の実装/疑似コードを歓迎します。
あなたが好きな答えの1つで提案されたコードを見てみましょう:
## Optimizer definition - nothing different from any classical example
opt = tf.train.AdamOptimizer()
## Retrieve all trainable variables you defined in your graph
tvs = tf.trainable_variables()
## Creation of a list of variables with the same shape as the trainable ones
# initialized with 0s
accum_vars = [tf.Variable(tf.zeros_like(tv.initialized_value()), trainable=False) for tv in tvs]
zero_ops = [tv.assign(tf.zeros_like(tv)) for tv in accum_vars]
## Calls the compute_gradients function of the optimizer to obtain... the list of gradients
gvs = opt.compute_gradients(rmse, tvs)
## Adds to each element from the list you initialized earlier with zeros its gradient (works because accum_vars and gvs are in the same order)
accum_ops = [accum_vars[i].assign_add(gv[0]) for i, gv in enumerate(gvs)]
## Define the training step (part with variable value update)
train_step = opt.apply_gradients([(accum_vars[i], gv[1]) for i, gv in enumerate(gvs)])
この最初の部分では、基本的に新しいvariables
とops
をグラフに追加します。
accum_ops
(のリスト)のops accum_vars
を使用して勾配を累積します。train_step
でモデルの重みを更新する次に、トレーニング時にそれを使用するには、次の手順に従う必要があります(まだリンクした回答から)。
## The while loop for training
while ...:
# Run the zero_ops to initialize it
sess.run(zero_ops)
# Accumulate the gradients 'n_minibatches' times in accum_vars using accum_ops
for i in xrange(n_minibatches):
sess.run(accum_ops, feed_dict=dict(X: Xs[i], y: ys[i]))
# Run the train_step ops to update the weights based on your accumulated gradients
sess.run(train_step)