私は次のように構成されたニューラルネットワークを持っています:
conv1 - pool1 - local reponse normalization (lrn2) - conv2 - lrn2 - pool2 -
conv3 - pool3 - conv4 - pool4 - conv5 - pool5 - dense layer (local1) -
local2 - softmax
テンソルボードの分布を調べたところ、次のようになりました。
したがって、損失の数値から、ネットワークが学習していることは明らかです。さらに、すべてのバイアスは、学習の結果としてそれらが変更されていることも示しています。しかし、重みはどうですか、時間の経過とともに変化していないように見えますか?私がその数字から得ているものは論理的ですか?グラフの重みとバイアスの画像のサブセットのみを投稿していることに注意してください。すべての重みの数値は、ここで示したものと同様であり、バイアスについても同様ですバイアスは学習しているように見えますが、重みは学習していません!!
グラフの作成方法は次のとおりです。
# Parameters
learning_rate = 0.0001
batch_size = 1024
n_classes = 1 # 1 since we need the value of the retrainer.
weights = {
'weights_conv1': tf.get_variable(name='weights1', shape=[5, 5, 3, 128], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv2': tf.get_variable(name='weights2', shape=[3, 3, 128, 128], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv3': tf.get_variable(name='weights3', shape=[3, 3, 128, 256], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv4': tf.get_variable(name='weights4', shape=[3, 3, 256, 256], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
'weights_conv5': tf.get_variable(name='weights5', shape=[3, 3, 256, 256], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32)),
}
biases = {
'bc1': tf.Variable(tf.constant(0.1, shape=[128], dtype=tf.float32), trainable=True, name='biases1'),
'bc2': tf.Variable(tf.constant(0.1, shape=[128], dtype=tf.float32), trainable=True, name='biases2'),
'bc3': tf.Variable(tf.constant(0.1, shape=[256], dtype=tf.float32), trainable=True, name='biases3'),
'bc4': tf.Variable(tf.constant(0.1, shape=[256], dtype=tf.float32), trainable=True, name='biases4'),
'bc5': tf.Variable(tf.constant(0.1, shape=[256], dtype=tf.float32), trainable=True, name='biases5')
}
def inference(frames):
# frames = tf.Print(frames, data=[tf.shape(frames)], message='f size is:')
tf.summary.image('frame_resized', frames, max_outputs=32)
frame_normalized_sub = tf.subtract(frames, tf.constant(128, dtype=tf.float32))
frame_normalized = tf.divide(frame_normalized_sub, tf.constant(255.0), name='image_normalization')
# conv1
with tf.name_scope('conv1') as scope:
conv_2d_1 = tf.nn.conv2d(frame_normalized, weights['weights_conv1'], strides=[1, 4, 4, 1], padding='SAME')
conv_2d_1_plus_bias = tf.nn.bias_add(conv_2d_1, biases['bc1'])
conv1 = tf.nn.relu(conv_2d_1_plus_bias, name=scope)
tf.summary.histogram('con1_output_distribution', conv1)
tf.summary.histogram('con1_before_relu', conv_2d_1_plus_bias)
# norm1
with tf.name_scope('norm1'):
norm1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')
tf.summary.histogram('norm1_output_distribution', norm1)
# pool1
with tf.name_scope('pool1') as scope:
pool1 = tf.nn.max_pool(norm1,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool1')
tf.summary.histogram('pool1_output_distribution', pool1)
# conv2
with tf.name_scope('conv2') as scope:
conv_2d_2 = tf.nn.conv2d(pool1, weights['weights_conv2'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_2_plus_bias = tf.nn.bias_add(conv_2d_2, biases['bc2'])
conv2 = tf.nn.relu(conv_2d_2_plus_bias, name=scope)
tf.summary.histogram('conv2_output_distribution', conv2)
tf.summary.histogram('con2_before_relu', conv_2d_2_plus_bias)
# norm2
with tf.name_scope('norm2'):
norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
name='norm2')
tf.summary.histogram('norm2_output_distribution', norm2)
# pool2
with tf.name_scope('pool2'):
pool2 = tf.nn.max_pool(norm2,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool2')
tf.summary.histogram('pool2_output_distribution', pool2)
# conv3
with tf.name_scope('conv3') as scope:
conv_2d_3 = tf.nn.conv2d(pool2, weights['weights_conv3'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_3_plus_bias = tf.nn.bias_add(conv_2d_3, biases['bc3'])
conv3 = tf.nn.relu(conv_2d_3_plus_bias, name=scope)
tf.summary.histogram('con3_output_distribution', conv3)
tf.summary.histogram('con3_before_relu', conv_2d_3_plus_bias)
# conv4
with tf.name_scope('conv4') as scope:
conv_2d_4 = tf.nn.conv2d(conv3, weights['weights_conv4'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_4_plus_bias = tf.nn.bias_add(conv_2d_4, biases['bc4'])
conv4 = tf.nn.relu(conv_2d_4_plus_bias, name=scope)
tf.summary.histogram('con4_output_distribution', conv4)
tf.summary.histogram('con4_before_relu', conv_2d_4_plus_bias)
# conv5
with tf.name_scope('conv5') as scope:
conv_2d_5 = tf.nn.conv2d(conv4, weights['weights_conv5'], strides=[1, 1, 1, 1], padding='SAME')
conv_2d_5_plus_bias = tf.nn.bias_add(conv_2d_5, biases['bc5'])
conv5 = tf.nn.relu(conv_2d_5_plus_bias, name=scope)
tf.summary.histogram('con5_output_distribution', conv5)
tf.summary.histogram('con5_before_relu', conv_2d_5_plus_bias)
# pool3
pool3 = tf.nn.max_pool(conv5,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',
name='pool5')
tf.summary.histogram('pool3_output_distribution', pool3)
# local1
with tf.variable_scope('local1') as scope:
# Move everything into depth so we can perform a single matrix multiply.
shape_d = pool3.get_shape()
shape = shape_d[1] * shape_d[2] * shape_d[3]
# tf_shape = tf.stack(shape)
tf_shape = 1024
print("shape:", shape, shape_d[1], shape_d[2], shape_d[3])
reshape = tf.reshape(pool3, [-1, tf_shape])
weight_local1 = \
tf.get_variable(name='weight_local1', shape=[tf_shape, 2046], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32))
bias_local1 = tf.Variable(tf.constant(0.1, tf.float32, [2046]), trainable=True, name='bias_local1')
local1_before_relu = tf.matmul(reshape, weight_local1) + bias_local1
local1 = tf.nn.relu(local1_before_relu, name=scope.name)
tf.summary.histogram('local1_output_distribution', local1)
tf.summary.histogram('local1_before_relu', local1_before_relu)
tf.summary.histogram('local1_weights', weight_local1)
tf.summary.histogram('local1_biases', bias_local1)
# local2
with tf.variable_scope('local2') as scope:
# Move everything into depth so we can perform a single matrix multiply.
weight_local2 = \
tf.get_variable(name='weight_local2', shape=[2046, 2046], dtype=tf.float32,
initializer=tf.contrib.layers.xavier_initializer_conv2d(uniform=False, dtype=tf.float32))
bias_local2 = tf.Variable(tf.constant(0.1, tf.float32, [2046]), trainable=True, name='bias_local2')
local2_before_relu = tf.matmul(local1, weight_local2) + bias_local2
local2 = tf.nn.relu(local2_before_relu, name=scope.name)
tf.summary.histogram('local2_output_distribution', local2)
tf.summary.histogram('local2_before_relu', local2_before_relu)
tf.summary.histogram('local2_weights', weight_local2)
tf.summary.histogram('local2_biases', bias_local2)
# linear Wx + b
with tf.variable_scope('softmax_linear') as scope:
weight_softmax = \
tf.Variable(
tf.truncated_normal([2046, n_classes], stddev=1 / 1024, dtype=tf.float32), name='weight_softmax')
bias_softmax = tf.Variable(tf.constant(0.0, tf.float32, [n_classes]), trainable=True, name='bias_softmax')
softmax_linear = tf.add(tf.matmul(local2, weight_softmax), bias_softmax, name=scope.name)
tf.summary.histogram('softmax_output_distribution', softmax_linear)
tf.summary.histogram('softmax_weights', weight_softmax)
tf.summary.histogram('softmax_biases', bias_softmax)
tf.summary.histogram('weights_conv1', weights['weights_conv1'])
tf.summary.histogram('weights_conv2', weights['weights_conv2'])
tf.summary.histogram('weights_conv3', weights['weights_conv3'])
tf.summary.histogram('weights_conv4', weights['weights_conv4'])
tf.summary.histogram('weights_conv5', weights['weights_conv5'])
tf.summary.histogram('biases_conv1', biases['bc1'])
tf.summary.histogram('biases_conv2', biases['bc2'])
tf.summary.histogram('biases_conv3', biases['bc3'])
tf.summary.histogram('biases_conv4', biases['bc4'])
tf.summary.histogram('biases_conv5', biases['bc5'])
return softmax_linear
# Note that this is the RMSE
with tf.name_scope('loss'):
# Note that the dimension of cost is [batch_size, 1]. Every example has one output and a batch
# is a number of examples.
cost = tf.sqrt(tf.square(tf.subtract(predictions, y_valence)))
cost_scalar = tf.reduce_mean(tf.multiply(cost, confidence_holder), reduction_indices=0)
# Till here cost_scolar will have the following shape: [[#num]]... That is why I used cost_scalar[0]
tf.summary.scalar("loss", cost_scalar[0])
with tf.name_scope('train'):
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost_scalar)
どんな助けでも大歓迎です!
から https://jhui.github.io/2017/03/12/TensorBoard-visualize-your-learning/
分布は、ヒストグラムをステップで表すもう1つの方法だと思います。
真ん中のほとんどの赤い線はヒストグラムの最大値を意味し、4本の線はそれぞれパーセントが0に分割されることを意味すると思います25%50%75%片側